Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The $ p$-class in a dual $ B\sp{\ast} $-algebra


Author: Pak Ken Wong
Journal: Trans. Amer. Math. Soc. 200 (1974), 355-368
MSC: Primary 46L05; Secondary 46K15
MathSciNet review: 0358371
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we introduce and study the class $ {A_p}(0 < p \leqslant \infty )$ in a dual $ {B^ \ast }$-algebra $ A$. We show that, for $ 1 \leqslant p \leqslant \infty ,{A_p}$ is a dual $ {A^ \ast }$-algebra which is a dense two-sided ideal of $ A$. If $ 1 < p < \infty $, we obtain that $ {A_p}$ is uniformly convex and hence reflexive. We also identify the conjugate space of $ {A_p}(1 \leqslant p < \infty )$. This is a generalization of the class $ {C_p}$ of compact operators on a Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] B. A. Barnes, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canad. J. Math. 20 (1968), 495-504. MR 38 #534. MR 0232208 (38:534)
  • [2] N. Dunford and J. T. Schwartz, Linear operators, II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181. MR 0188745 (32:6181)
  • [3] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, ``Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 36 #3137; 39 #7447. MR 0246142 (39:7447)
  • [4] C. A. McCarthy, $ {c_p}$, Israel J. Math. 5 (1967), 249-271. MR 37 #735. MR 0225140 (37:735)
  • [5] T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach $ \ast $-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15-36. MR 16, 1126. MR 0070068 (16:1126d)
  • [6] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 249-253. MR 1546121
  • [7] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [8] P. P. Saworotnow, Trace-class and centralizers of an $ {H^ \ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2305. MR 0267403 (42:2305)
  • [9] P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary $ {H^ \ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304. MR 0267402 (42:2304)
  • [10] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878. MR 0119112 (22:9878)
  • [11] J. F. Smith, The $ p$-classes of an $ {H^ \ast }$-algebra, Pacific J. Math. 42 (1972), 777-793. MR 0322517 (48:879)
  • [12] P. K. Wong, On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 437-448. MR 47 #7431. MR 0318885 (47:7431)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05, 46K15

Retrieve articles in all journals with MSC: 46L05, 46K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0358371-X
Keywords: Dual $ {B^ \ast }$-algebra, hermitian minimal idempotent, uniform convexity, proper $ {H^ \ast }$-algebra
Article copyright: © Copyright 1974 American Mathematical Society