Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Semigroups of scalar type operators on Banach spaces


Author: Ahméd Ramzy Sourour
Journal: Trans. Amer. Math. Soc. 200 (1974), 207-232
MSC: Primary 47D05
MathSciNet review: 0365228
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result is that if $ \{ T(t):t \geqslant 0\} $ is a strongly continuous semigroup of scalar type operators on a weakly complete Banach space $ X$ and if the resolutions of the identity for $ T(t)$ are uniformly bounded in norm, then the infinitesimal generator is scalar type. Moreover, there exists a countably additive spectral measure $ K( \cdot )$ such that $ T(t) = \smallint \exp (\lambda t)dK(\lambda )$, for $ t \geqslant 0$. This is a direct generalization of the well-known theorem of Sz.-Nagy about semigroups of normal operators on a Hilbert space. Similar spectral representations are given for representations of locally compact abelian groups and for semigroups of unbounded operators. Connections with the theory of hermitian and normal operators on Banach spaces are established. It is further shown that $ R$ is the infinitesimal generator of a semigroup of hermitian operators on a Banach space if and only if iR is the generator of a group of isometries.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, Notes on spectral theory, Van Nostrand Math. Studies, no. 5, Van Nostrand, Princeton, N. J., 1966. MR 32 #8170. MR 0190760 (32:8170)
  • [2] A. V. Balakrishnan, An operational calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91 (1959), 330-353. MR 21 #5904. MR 0107179 (21:5904)
  • [3] E. Berkson, A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365-373. MR 27 #5131. MR 0155192 (27:5131)
  • [4] -, Semi-groups of scalar type operators and a theorem of Stone, Illinois J. Math. 10 (1966), 345-352. MR 33 #583. MR 0192358 (33:583)
  • [5] -, Action of $ {W^ \ast }$-algebras in Banach spaces, Math. Ann. 189 (1970), 261-271. MR 43 #3813. MR 0278081 (43:3813)
  • [6] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser., no. 2, Cambridge Univ. Press, London and New York, 1971. MR 44 #5779. MR 0288583 (44:5779)
  • [7] A. Devinatz, A note on semi-groups of unbounded self-adjoint operators, Proc. Amer. Math. Soc. 5 (1954), 101-102. MR 15, 632. MR 0060153 (15:632e)
  • [8] N. Dunford and J. T. Schwartz, Linear operators. Parts I, II, III, Interscience, New York, 1958, 1963, 1971. MR 22 #8302; 32 #6181. MR 0188745 (32:6181)
  • [9] U. Fixman, Problems in spectral operators, Pacific J. Math. 9 (1959), 1029-1051. MR 21 #7441. MR 0108727 (21:7441)
  • [10] S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51-65. MR 20 #3457. MR 0096976 (20:3457)
  • [11] C. Foiaş, On strongly continuous semigroups of spectral operators in Hilbert space, Acta Sci. Math. (Szeged) 19 (1958), 188-191. MR 23 #A2057; errata, 23, 877. MR 0124747 (23:A2057)
  • [12] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [13] L. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953. MR 14, 883. MR 0054173 (14:883c)
  • [14] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc 100 (1961), 29-43. MR 24 #A2860. MR 0133024 (24:A2860)
  • [15] -, Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. MR 29 #6329. MR 0169074 (29:6329)
  • [16] C. A. McCarthy, Commuting Boolean algebras of projection. I, Pacific J. Math. 11 (1961), 295-307. MR 23 #A2750. MR 0125448 (23:A2750)
  • [17] -, Commuting Boolean algebras of projections. II. Boundedness in $ {L_p}$, Proc. Amer. Math. Soc. 15 (1964), 781-787. MR 30 #4154. MR 0173947 (30:4154)
  • [18] T. W. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc. 133 (1968), 385-414. MR 37 #6768. MR 0231213 (37:6768)
  • [19] B. Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 39, Springer-Verlag, Berlin and New York, 1967. MR 35 #4744. MR 0213890 (35:4744)
  • [20] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. MR 18, 912. MR 0084733 (18:912a)
  • [21] K Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin, 1965. MR 31 #5054.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0365228-7
Keywords: Semigroup of operators, spectral operator, scalar type operator, infinitesimal generator
Article copyright: © Copyright 1974 American Mathematical Society