THE SPACE OF CONJUGACY CLASSES OF A TOPOLOGICAL GROUP

BY

DENNIS DALUGE

ABSTRACT. The space \(G^\# \) of conjugacy classes of a topological group \(G \) is the orbit space of the action of \(G \) on itself by inner automorphisms. For a class of connected and locally connected groups which includes all analytic \([Z]\)-groups, the universal covering space of \(G^\# \) may be obtained as the space of conjugacy classes of a group which is locally isomorphic with \(G \), and the Poincaré group of \(G^\# \) is found to be isomorphic with that of \(G/G' \), the commutator quotient group. In particular, it is shown that the space \(G^\# \) of a compact analytic group \(G \) is simply connected if and only if \(G \) is semisimple. The proof of this fact has not appeared in the literature, even though more specialized methods are available for this case.

I. Definitions and elementary properties. Two elements \(x, y \) of a topological group \(G \) are called conjugate, and we write \(x \approx y \), if there is an element \(t \in G \) such that \(y = txt^{-1} \). The equivalence class of a point \(x \) under this relation is called the conjugacy class of \(x \), denoted \(I_x \). A subset of \(G \) which is a union of conjugacy classes is invariant under inner automorphisms and will be said to be invariant.

If \(G \) acts on itself by inner automorphisms, the inner automorphisms determined by the center \(Z(G) \) of \(G \) are trivial and \(G/Z(G) \) acts effectively on \(G \). The orbit space under the action of \(G \) or \(G/Z(G) \) is called the space of conjugacy classes of \(G \), denoted \(G^\# \). If \(G \) is the direct product of groups \(G_i \), then \(G^\# \) is homeomorphic with the Cartesian product of the spaces \(G_i^\# \) (see [5, p. 130]).

The space \(G^\# \) of a compact analytic group \(G \) is homeomorphic with the orbit space \(T/W \) of the action of the Weyl group \(W \) on a maximal toroid \(T \) of \(G \) [1, p. 95]. If \(G \) is semisimple, \(G^\# \) may be obtained by identifying certain boundary points of a compact convex polyhedron in the Lie algebra of \(T \) (see [2, Example 6]). Some elementary proofs and [11, p. 231] give the following:

LEMMA 1. If \(G \) is a compact analytic group, then \(G^\# \) is compact, Hausdorff, second countable, and locally arcwise simply connected.
The natural map $p: G \to G^\#$ may not be closed if G is not discrete, and $G/Z(G)$ is not compact. From [4, p. 303], we have the following:

Proposition 2. If G is a connected, locally compact group, then the following are equivalent:

(i) the natural map $p: G \to G^\#$ is closed;

(ii) each neighborhood of e contains an invariant neighborhood of e (the [SIN] property);

(iii) G is the direct product of a compact group and a vector group.

Example 1. Let H be the subgroup of $SL(3, \mathbb{R})$ consisting of matrices of the form

$$M(r, s, t) = \begin{pmatrix} 1 & r & . \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix}.$$

It is easily checked that

$$M(a, b, c)M(r, s, t)(M(a, b, c))^{-1} = M(r, s, t + as - br)$$

and that

$$M(a, b, c)M(r, s, t)(M(a, b, c))^{-1}(M(r, s, t))^{-1} = M(0, 0, as - br).$$

An element of the form $M(0, 0, t)$ is central, and $D = \{M(0, 0, n): n \in \mathbb{Z}\}$ is a discrete central subgroup. The conjugacy class of a noncentral element $M(r, s, t)$ is $\{M(r, s, w): w \in \mathbb{R}\}$. In particular, $\{M(1/n, 0, w): w \in \mathbb{R}\}$ is a conjugacy class for each $n \in \mathbb{Z}^+$. Hence, H is not an [SIN] group. The quotient group H/D has compact conjugacy classes and is not an [SIN] group.

Example 2. In the group H of Example 1, consider the subgroup $G = \{M(m, n, t); m, n \in \mathbb{Z}; t \in \mathbb{R}\}$. The conjugacy class of a noncentral element $M(m, n, t)$ is $\{M(m, n, t + kd); k \in \mathbb{Z}; d$ the greatest common divisor of m and $n\}$. The space $G^\#$ is normal, because each component of $G^\#$ is homeomorphic with $R/d\mathbb{Z}$ for some $d \in \mathbb{Z}$. The component of e is exactly the center, so that G is an [SIN] group which is not the direct product of a vector group and a compact group.

For connectedness, we have

Proposition 3. Suppose that p is a closed map or that G is locally connected or that each conjugacy class is connected. Then $G^\#$ is connected if and only if G is connected.
Proof (of the nontrivial implication). Let C be the (invariant) component subgroup of G. If $C \neq G$, there is an open and closed set E which does not meet C. If p is closed, then $p(E)$ is an open and closed set which does not meet $p(C)$.

In the other two cases, consider the space $(G/C)^#$ and the diagram:

$$
\begin{array}{c}
G \\
\downarrow \quad \downarrow \\
G/C \\
\downarrow \\
(G/C)^# \\
\downarrow \\
G^# \\
\end{array}
$$

If G is locally connected, then G/C and $(G/C)^#$ are discrete. If each conjugacy class is connected, then $G/C = (G/C)^#$ is totally disconnected [8, p. 60]. But in either case, $(G/C)^#$ is connected, hence, trivial. Thus, $G = C$.

Clearly, if $x, y \in G$ and $z \in Z(G)$, then $x \approx y$ if and only if $zx \approx zy$. This suggests that we define an action of $Z(G)$ on $G^#$ by

$$(*)
\begin{array}{c}
zI_x = I_{zx}.
\end{array}
$$

This action of $Z(G)$ on $G^#$ constitutes a transformation group, in the sense of [11], except that $G^#$ may not be a Hausdorff space.

Lemma 4. If D is a closed subgroup of $Z(G)$, then the orbit space $G^#/D$ is homeomorphic with $(G/D)^#$.

Proof. Consider the diagram:

$$
\begin{array}{c}
G/D \\
\downarrow \\
(G/D)^# \\
\downarrow \\
G^# \\
\downarrow \\
G^#/D
\end{array}
$$

II. Stability subgroups for the action of $Z(G)$ on $G^#$. The stability subgroups for the action $(*)$ are conveniently described in terms of the sets $I_x I_x^{-1}$. For each $x \in G$, the set $I_x I_x^{-1}$ is invariant and inversion-invariant and $e \in I_x I_x^{-1} \subset (G, G)$, the algebraic commutator subgroup. The following theorem, which was proved by Goto in [6], will be used to show that the main result of this paper (Theorem 16) holds for analytic $[Z]$-groups:

Theorem 5 (Goto). If G is a compact semisimple analytic group, then there is an element $x \in G$ such that $I_x I_x^{-1} = G$.

In a more general situation, we have the following relationship between the algebraic and topological structure of the conjugacy classes:

Proposition 6. Suppose that the set $I_x I_x^{-1}$ is locally compact in its relative topology. Then $I_x \subset I_x I_x^{-1} I_x \subset x(G, G)$. Moreover, if the set $I_x I_x^{-1}$ is
closed under the group operation, then it is a closed invariant subgroup of \(G \) contained in \((G, G)\).

Proof. The second part follows from [8, p. 35], for then \(I_xI_x^{-1} \) is a locally compact subgroup.

For the first part, let \(U, V \) be neighborhoods of \(e \) with \(\bar{U} \cap I_xI_x^{-1} \) compact and \(V^2 \subset U. \) Let \(w \in \bar{I}_x, z \in I_x^{-1} \cap w^{-1}V, \) and let \(\{w_i\} \) be a net in \(I_x \) converging to \(w. \) Then, eventually,

\[w_i z \in Vw_i w^{-1}V \cap I_xI_x^{-1} = V^2 \cap I_xI_x^{-1} \subset U \cap I_xI_x^{-1}. \]

Thus, \(wz \) is in the closed set \(\bar{U} \cap I_xI_x^{-1} \) and \(w = wzz^{-1} \in I_xI_x^{-1}. \)

Example 3. If \(G \) is the affine group, \(\{(r, s) : r \in R^+, s \in R\} \), and \(x = (1, 0) \), then \(e \in \bar{I}_x, \) and \(I_xI_x^{-1} = I_x \cup I_x^{-1} \cup \{e\} = (G, G) \) (see [8, p. 350]).

We now identify the stability subgroups for the action \((*)\).

Lemma 7. If \(D \) is a closed subgroup of \(Z(G) \), then the set \(D_x = D \cap I_xI_x^{-1} = D \cap xI_x^{-1} \) is the stability subgroup in \(D \) of \(I_x \in G^\# \).

Proof. An element \(d \in D \) is in the stability subgroup if and only if it translates some (and hence, every) conjugate of \(x \) to another conjugate of \(x. \) Then, for some \(s, t \in G, d = sx^{-1}tx^{-1}t^{-1} = s^{-1}ds = xs^{-1}tx^{-1}t^{-1}s. \)

These stability subgroups are related to the zeros of characters of finite-dimensional irreducible representations:

Corollary 8. Let \(\pi \) be a finite-dimensional irreducible representation of \(G \) and let \(x \in G. \) If \(\text{trace}(\pi(x)) \neq 0, \) then \(Z(G) \cap I_xI_x^{-1} \subset \text{kernel}(\pi). \) If moreover, \(\pi \) is faithful, then the stability subgroup of \(I_x \in G^\# \) under \((*)\) is trivial.

Proof. Let \(z \in Z(G) \cap I_xI_x^{-1}, \) then Schur’s lemma shows that \(\text{trace}(\pi(x)) = \text{trace}(\pi(xz)) = \text{trace}(\pi(x))\text{trace}(\pi(z))/\text{trace}(\pi(e)). \)

Corollary 9. If \(G \) is a compact semisimple analytic group and \(x \in G \) is a regular point, that is, a point whose centralizer has minimum dimension, then \(D_x \) is isomorphic with a subgroup of the Weyl group \(W \) of \(G. \)

Proof. There is a maximal toroid \(T \) which contains \(x \) (and \(Z(G) \)) (see [1]) and for each \(d \in D_x \) there is exactly one \(nT \in W \) such that \(dx = nx^{-1}. \) This correspondence effects an isomorphism between \(D_x \) and an Abelian subgroup of \(W. \)

Example 4. If \(G = SU(2), \) there is only one conjugacy class with a non-trivial stability subgroup, that of \((0, -1). \) The Weyl group is of order two.
III. The Poincaré group of $G^\#$. The relationship between the structures $G^#$ and $G^a = G/G'$, where G' is the closed commutator subgroup of G, is a consequence of the fact that the natural map from G to G^a factors through $G^#$ (see [8, p. 358]).

Lemma 10. The map $q: G^\# \to G^a$ defined by $q(t_x) = xG'$ is continuous, open and surjective.

A connected and locally connected space S will be said to be simply connected if, for each covering space (U, f) of a space T and continuous map $g: S \to T$, there is a unique continuous map $h: S \to U$ such that $f \circ h = g$ and $h(s) = u$, where s and u are prescribed points such that $f(u) = g(s)$.

This is the definition used by Hochschild [10], and is equivalent to that used by Chevalley [3], except that we do not require the Hausdorff property. The stability of this lifting property under two types of maps which appear leads to sufficient conditions for the spaces $G^#$ and G^a to be simply connected.

For analytic \mathbb{R}-groups, we show that these spaces are arcwise simply connected if they are simply connected.

A space is said to be locally simply connected if each point has a simply connected neighborhood. A connected space has a simply connected covering space if and only if it is locally simply connected (see [10] and [3]).

Lemma 11. Let G be a group which acts on a simply connected space M with a fixed point m. Then the orbit space M/G is simply connected.

Proof. Consider the commutative diagram

$$
\begin{array}{ccc}
M & \xrightarrow{p} & M/G \\
\downarrow{h'} & & \downarrow{g'} \\
U & \xrightarrow{f} & T \\
\end{array}
$$

where f is a covering, g is continuous, $g' = g \circ p$ and h' is a specified lift of g'. To show that there is a map h as indicated, we show that h' is constant on G-orbits. Since h' is the unique map taking m to $h'(m)$ and satisfying $f \circ h' = g'$, precomposition of h' with an action of G does not alter h', that is h' is constant on G-orbits.

We can now give some sufficient conditions for the spaces $G^#$ and G^a to be simply connected:

Proposition 12. If G is locally connected and $G^#$ is simply connected, then $G^a = G/G'$ is simply connected.
Proof. By Proposition 3, \(G \) is connected. Hence, the \(G' \)-cosets are connected [9, p. 142]. Use [10, p. 56], and Lemma 10.

Proposition 13. If \(G \) is simply connected, then \(G' \) is simply connected.

Proof. The stability subgroup of \(e \) for the action of \(G \) on itself by inner automorphisms is \(G \). Use Lemma 11.

Proposition 14. Let \(D \) be a discrete subgroup of \(Z(G) \) and let \(D_x \) be the stability subgroup of \(I_x \in G' \) under (*) . If \(G' \) is simply connected, then \((G/D_x)' \) is simply connected.

Proof. The subgroup \(D_x \) is closed (we have not assumed any separation properties for \(G' \)). Use Lemmas 11 and 4.

Proposition 15. Let \(D \) be a discrete subgroup of \(Z(G) \) which is generated by the stability subgroups \(D_x \) under (*). If \(G' \) is simply connected, then \((G/D)' \) is simply connected.

Proof. Partially order by inclusion the collection of subgroups \(D^* \) of \(D \) such that the orbit space \(G'/D^* \) is simply connected, and use Zorn's lemma. The uniqueness of lifts in the definition of "simply connected" implies that the union of the elements of a chain is an upper bound for the chain, and \(D \) is the only possible maximal element because of Proposition 14.

Example 5. In Example 1, the group \(H \) is the universal covering group of \(H/D \) and \((H/D)' \) is simply connected.

We are now ready to prove the main result.

Theorem 16. Let \(G \) be a connected and locally simply connected group with universal covering group \(\tilde{G} \). If \(D \) is a discrete subgroup of \(Z(\tilde{G}) \) such that \(G \cong \tilde{G}/D \) and \(D \cap (\tilde{G})' \) is generated by the stability groups \(D_x \) under (*), and \(D(\tilde{G})'/(\tilde{G})' \) is discrete in \((\tilde{G})^a = \tilde{G}/(\tilde{G})' \), then the Poincaré groups of \(G' \) and \(G^a \) are isomorphic with \(D/(D \cap (\tilde{G})') \).

Proof. Let \(D_1 = D \cap (\tilde{G})' \) and let \(f_1: G \to G/D_1 \) and \(f_2: G/D_1 \to G/D \) be the natural covering maps. Since \(D(\tilde{G})'/(\tilde{G})' \) is closed in \((\tilde{G})^a \), \(f_1((\tilde{G})') = (\tilde{G}/D_1)' \) and \(f_2(f_1(D(\tilde{G})')) = (\tilde{G}/D)' \). Thus, we have the diagram

\[
\begin{array}{ccc}
\tilde{G} & \longrightarrow & (\tilde{G})' \\
\downarrow f_1 & & \downarrow f_1^a \\
\tilde{G}/D_1 & \longrightarrow & (G/D_1)' \\
\downarrow f_2 & & \downarrow f_2^a \\
G/D & \longrightarrow & (G/D)' \\
\end{array}
\]
where f_1^a, $f_2^#$ are the topological isomorphisms induced by f_1, $f_2^#$ and f_2^a are induced by f_2 and other maps are as in Lemmas 4 and 10.

Propositions 13, 15, and 12 show that the spaces $(\tilde{G}/D_1)^#$ and $(\tilde{G}/D_1)^a$ are simply connected. It remains to show that D/D_1 is a properly discontinuous group of homeomorphisms of these spaces [12, p. 87]. In $(\tilde{G}/D_1)^a$, $D/D_1 \cong (D(\tilde{G})'/D_1)/(\tilde{G})'/D_1)$, a discrete subgroup. The action (*) of D/D_1 on $(\tilde{G}/D_1)^#$ is also properly discontinuous, because the elements of a D/D_1 orbit are conjugacy classes lying in distinct $(\tilde{G}/D_1)'$-cosets (in \tilde{G}, we have $(dI_x)^{-1}_x \subseteq (\tilde{G})'$ only if $d \in I_x^{-1}_x(\tilde{G})'$).

Corollary 17. If G is an analytic $[Z]$-group, the spaces $G^#$ and G^a are locally arcwise simply connected and have isomorphic fundamental groups.

Proof. First of all, the group G is the direct product of a vector group and a compact group (Proposition 2), so we may assume that G is compact. Then \tilde{G} is the direct product of a vector group and a simply connected compact semisimple analytic group H (see [10] and [13]). If D is a discrete subgroup of $\mathbb{Z}(\tilde{G})$ such that $\tilde{G}/D = G$, then $DH/H = D(\tilde{G})'(\tilde{G})'$ is discrete [10, p. 6] and $D \cap H = D \cap (\tilde{G})' = D_x$ for some $x \in H$ (Theorem 5). The result follows from [12, p. 88], because $H^#$ is arcwise simply connected (see Proposition 13, Lemma 1, and [10]).

Corollary 18. A compact analytic group is semisimple if and only if $G^#$ is simply connected.

Proof. A compact analytic group G is semisimple if and only if the toroid G^a is trivial; use Corollary 17.

Example 6. One maximal toroid of $G = SO(4)$ consists of matrices

$$M(\theta, \varphi) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & \cos \varphi & -\sin \varphi \\ 0 & 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

and the nontrivial elements of the Weyl group are represented by the matrices

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
and
\[
C = AB = BA = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]

One checks easily that
\[
A(M(\theta, \varphi))A^{-1} = M(2\pi - \theta, 2\pi - \varphi),
\]
\[
B(M(\theta, \varphi))B^{-1} = M(\varphi, \theta),
\]
\[
C(M(\theta, \varphi))C^{-1} = M(2\pi - \varphi, 2\pi - \theta),
\]
so that each conjugacy class is represented by a matrix \(M(\theta, \varphi) \) with \(0 \leq \theta \leq \pi \) and \(\theta \leq \varphi \leq 2\pi - \theta \). The space \(G^\# \) may be realized as the small triangle on the left in the square
\[
\begin{array}{cc}
(0, 0) & (2\pi, 0) \\
(0, 2\pi) & (2\pi, 2\pi)
\end{array}
\]
where pairs \(M(0, \varphi), M(0, 2\pi - \varphi) \) on the left-hand boundary must be identified. The space \(G^\# \) is simply connected, as indicated by Corollary 18.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455