Interpolation polynomials which give best order of approximation among continuously differentiable functions of arbitrary fixed order on
Author:
A. K. Varma
Journal:
Trans. Amer. Math. Soc. 200 (1974), 419426
MSC:
Primary 41A05
MathSciNet review:
0369999
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The object of this paper is to show that there exists a polynomial of degree which interpolates a given function exactly at the zeros of th Tchebycheff polynomial and for which where is the modulus of continuity of of th order.
 [1]
P. L. Butzer, On approximation theory (Proc. Conf. Oberwolfach, 1963), Birkhäuser, Basel, 1964. MR 31 #2537.
 [2]
Géza
Freud, Über ein Jacksonsches interpolationsverfahren, On
Approximation Theory (Proceedings of Conference in Oberwolfach, 1963),
Birkhäuser, Basel, 1964, pp. 227–232 (German). MR 0182826
(32 #308)
 [3]
S.
B. Stečkin, On the order of the best approximations of
continuous functions, Izvestiya Akad. Nauk SSSR. Ser. Mat.
15 (1951), 219–242 (Russian). MR 0041959
(13,29d)
 [4]
S.
B. Stečkin, The approximation of periodic functions by
Fejér sums, Amer. Math. Soc. Transl. (2) 28
(1963), 269–282 (Russian). MR 0162086
(28 #5287b)
 [5]
A.
K. Varma, The approximation of functions by certain trigonometric
interpolation polynomials, Approximation theory (Proc. Internat.
Sympos., Univ. Texas, Austin, Tex., 1973), Academic Press, New York, 1973,
pp. 511–515. MR 0333550
(48 #11875)
 [6]
, Trigonometric interpolation polynomials which gives best order of approximation among continuously differentiable functions, Proc. Internat. Sympos. Approximation Theory (Poznań, Poland, 1972) (to appear).
 [7]
A.
Zygmund, The approximation of functions by typical means of their
Fourier series, Duke Math. J. 12 (1945),
695–704. MR 0015539
(7,435b)
 [8]
, Trigonometric series. Vols. 1, 2, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21, #6498.
 [1]
 P. L. Butzer, On approximation theory (Proc. Conf. Oberwolfach, 1963), Birkhäuser, Basel, 1964. MR 31 #2537.
 [2]
 G. Freud, Über ein Jacksonsches Interpolationsverfahren, On Approximation Theory (Proc. Conf. Oberwolfach, 1963), Birkhäuser, Basel, 1964, pp. 227232. MR 32 #308. MR 0182826 (32:308)
 [3]
 S. B. Stečkin, On the order of the best approximations of continuous functions, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 219242. (Russian) MR 13, 29. MR 0041959 (13:29d)
 [4]
 , The approximation of periodic functions by Fejér sums, Trudy Mat. Inst. Steklov. 62 (1961), 4860; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 269282. MR 28 #5287a, b. MR 0162086 (28:5287b)
 [5]
 A. K. Varma, The approximation of functions by certain trigonometric interpolation polynomials, Proc. Internat. Sympos. Austin, Texas, edited by G. G. Lorentz, 1973, pp. 511515. MR 0333550 (48:11875)
 [6]
 , Trigonometric interpolation polynomials which gives best order of approximation among continuously differentiable functions, Proc. Internat. Sympos. Approximation Theory (Poznań, Poland, 1972) (to appear).
 [7]
 A. Zygmund, The approximation of functions by typical means of their Fourier series, Duke Math. J. 12 (1945), 695704. MR 7, 435. MR 0015539 (7:435b)
 [8]
 , Trigonometric series. Vols. 1, 2, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21, #6498.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
41A05
Retrieve articles in all journals
with MSC:
41A05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197403699995
PII:
S 00029947(1974)03699995
Keywords:
Polynomial approximation,
modulus of continuity,
Hermite interpolation,
typical means,
Tchebycheff nodes
Article copyright:
© Copyright 1974 American Mathematical Society
