Interpolation polynomials which give best order of approximation among continuously differentiable functions of arbitrary fixed order on

Author:
A. K. Varma

Journal:
Trans. Amer. Math. Soc. **200** (1974), 419-426

MSC:
Primary 41A05

DOI:
https://doi.org/10.1090/S0002-9947-1974-0369999-5

MathSciNet review:
0369999

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The object of this paper is to show that there exists a polynomial of degree which interpolates a given function exactly at the zeros of th Tchebycheff polynomial and for which where is the modulus of continuity of of th order.

**[1]**P. L. Butzer,*On approximation theory*(Proc. Conf. Oberwolfach, 1963), Birkhäuser, Basel, 1964. MR**31**#2537.**[2]**Géza Freud,*Über ein Jacksonsches interpolationsverfahren*, On Approximation Theory (Proceedings of Conference in Oberwolfach, 1963), Birkhäuser, Basel, 1964, pp. 227–232 (German). MR**0182826****[3]**S. B. Stečkin,*On the order of the best approximations of continuous functions*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**15**(1951), 219–242 (Russian). MR**0041959****[4]**S. B. Stečkin,*The approximation of periodic functions by Fejér sums*, Trudy Mat. Inst. Steklov.**62**(1961), 48–60 (Russian). MR**0162085**

S. B. Stečkin,*The approximation of periodic functions by Fejér sums*, Amer. Math. Soc. Transl. (2)**28**(1963), 269–282 (Russian). MR**0162086****[5]**A. K. Varma,*The approximation of functions by certain trigonometric interpolation polynomials*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 511–515. MR**0333550****[6]**-,*Trigonometric interpolation polynomials which gives best order of approximation among continuously differentiable functions*, Proc. Internat. Sympos. Approximation Theory (Poznań, Poland, 1972) (to appear).**[7]**A. Zygmund,*The approximation of functions by typical means of their Fourier series*, Duke Math. J.**12**(1945), 695–704. MR**0015539****[8]**-,*Trigonometric series*. Vols. 1, 2, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR**21**, #6498.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A05

Retrieve articles in all journals with MSC: 41A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0369999-5

Keywords:
Polynomial approximation,
modulus of continuity,
Hermite interpolation,
typical means,
Tchebycheff nodes

Article copyright:
© Copyright 1974
American Mathematical Society