Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Modular and distributive semilattices


Author: Joe B. Rhodes
Journal: Trans. Amer. Math. Soc. 201 (1975), 31-41
MSC: Primary 06A20
MathSciNet review: 0351935
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A modular semilattice is a semilattice $ S$ in which $ w \geq $ implies that there exist $ x,y \in S$ such that $ x \geq a,y \geq b$ and $ x \wedge y = x \wedge w$. This is equivalent to modularity in a lattice and in the semilattice of ideals of the semilattice, and the condition implies the Kurosh-Ore replacement property for irreducible elements in a semilattice. The main results provide extensions of the classical characterizations of modular and distributive lattices by their sublattices: A semilattice $ S$ is modular if and only if each pair of elements of $ S$ has an upper bound in $ S$ and there is no retract of $ S$ isomorphic to the nonmodular five lattice. A semilattice is distributive if and only if it is modular and has no retract isomorphic to the nondistributive five lattice.


References [Enhancements On Off] (What's this?)

  • [1] R. Balbes, A representation theory for prime and implicative semilattices, Trans. Amer. Math. Soc. 136 (1969), 261-267. MR 38 #2062. MR 0233741 (38:2062)
  • [2] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [3] P. Crawley, Decomposition theory for nonsemimodular lattices, Trans. Amer. Math. Soc. 99 (1961), 246-254. MR 22 #10930. MR 0120173 (22:10930)
  • [4] R. P. Dilworth and P. Crawley, Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc. 96 (1960), 1-22. MR 22 #9461. MR 0118690 (22:9461)
  • [5] D. E. Edmondson, Homomorphisms of a modular lattice, Unpublished Doctoral Dissertation, California Institute of Technology, Pasadena, California, 1954.
  • [6] G. Grätzer, Lattice theory, Freeman, San Francisco, Calif., 1971.
  • [7] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185. MR 25 #2983. MR 0139551 (25:2983)
  • [8] C. Green, A decomposition property for semilattices, Notices Amer. Math. Soc. 15 (1968), 1040. Abstract #68T-A55.
  • [9] T. Katriňák, Pseudokomplementäre Halbverbände, Mat. Časopis Sloven. Akad. Vied. 18 (1968), 121-143. MR 41 #6733. MR 0262123 (41:6733)
  • [10] O. Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943), 558-566. MR 5, 88. MR 0009017 (5:88b)
  • [11] J. B. Rhodes, Modular semilattices, Notices Amer. Math. Soc. 17 (1970), 272-273. Abstract #672-659.
  • [12] -, Decomposition of semilattices with applications to topological lattices, Pacific J. Math. 44 (1973), 299-307. MR 47 #3262. MR 0314710 (47:3262)
  • [13] G. Szász, Introduction to lattice theory, 3rd rev. ed., Akad. Kiadó, Budapest; Academic Press, New York, 1963. MR 29 #3396. MR 0166118 (29:3396)
  • [14] J. C. Varlet, Modularity and distributivity in partially ordered groupoids, Bull. Soc. Roy. Sci. Liège 38 (1969), 639-648. MR 43 #3189. MR 0277456 (43:3189)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A20

Retrieve articles in all journals with MSC: 06A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0351935-X
Keywords: Lattice, semilattice, poset, modular, distributive, semimodular, ideal, retract, neet-irreducible, finite maximal chain
Article copyright: © Copyright 1975 American Mathematical Society