Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Identities involving the coefficients of a class of Dirichlet series. VII
HTML articles powered by AMS MathViewer

by Bruce C. Berndt PDF
Trans. Amer. Math. Soc. 201 (1975), 247-261 Request permission

Abstract:

Let $a(n)$ be an arithmetical function, and consider the Riesz sum ${A_\rho }(x) = {\Sigma _{n \leq x}}a(n){(x - n)^\rho }$. For $a(n)$ belonging to a certain class of arithmetical functions, ${A_\rho }(x)$ can be expressed in terms of an infinite series of Bessel functions. K. Chandrasekharan and R. Narasimhan have established this identity for the widest known range of $\rho$. Their proof depends upon equi-convergence theory of trigonometric series. An alternate proof is given here which uses only the classical theory of Bessel functions.
References
  • T. M. Apostol, Identities involving the coefficients of certain Dirichlet series, Duke Math. J. 18 (1951), 517–525. MR 41880, DOI 10.1215/S0012-7094-51-01842-X
  • Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series, Thesis, University of Wisconsin, Madison, Wis., 1966. —, Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc. 137 (1969), 345-359. MR 38 #4656.
  • K. Chandrasekharan and S. Minakshisundaram, Typical means, Oxford University Press, 1952. MR 0055458
  • K. Chandrasekharan and Raghavan Narasimhan, Hecke’s functional equation and arithmetical identities, Ann. of Math. (2) 74 (1961), 1–23. MR 171761, DOI 10.2307/1970304
  • K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93–136. MR 140491, DOI 10.2307/1970267
  • A. L. Dixon and W. L. Ferrar, Lattice-point summation formulae, Quart. J. Math. Oxford Ser. 2 (1931), 31-54.
  • Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), no. 2, 205–216 (German). MR 1511399, DOI 10.1007/BF01449900
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0065685
  • C. F. Gauss, De nexu inter multitudinem classium, in quas formae binariae secundi gradus distribuuntur, earumque determinantem, Werke, Zweiter Band, Königlichen Gesellschaft der Wiss. Göttingen, 1876, pp. 269-291. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283. —, The average order of the arithmetical functions $P(x)$ and $\Delta (x)$, Proc. London Math. Soc. (2) 15 (1916), 192-213. G. H. Hardy, A further note on Ramanujan’s arithmetical function $\tau (n)$, Proc. Cambridge Philos. Soc. 34 (1938), 309-315. —, Collected papers. Vol. II, Clarendon Press, Oxford, 1967. MR 39 #3958. G. H. Hardy and E. Landau, The lattice points of a circle, Proc. Roy. Soc. Ser. A 105 (1924), 244-258.
  • E. Hecke, Über die Lösungen der Riemannschen Funktionalgleichung, Math. Z. 16 (1923), no. 1, 301–307 (German). MR 1544596, DOI 10.1007/BF01175688
  • —, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224. E. W. Hobson, The theory of functions of a real variable. Vol. II, 2nd ed., Cambridge Univ. Press, Cambridge, 1926. E. Landau, Über eine Aufgabe aus der theorie der quadratischen Formen, S.-B. Akad. Wiss. Wien Math.-Natur. Kl. 124 (1915), Abt. IIa, 445-468. —, Zur analytischen Zahlentheorie der definiten quadratischen Formen. (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), S.-B. Königl. Preuss. Akad. Wiss. 31 (1915), 458-476. —, Über die Anzahl der Gitterpunkte in gewissen Bereichen (Zweite Abhandlung), Nachr. Ges. Wiss. Goöttingen Math.-Phys. Kl. 1915, 209-243. —, Vorlesungen über Zahlentheorie, Zweiter Band, S. Hirzel, Leipzig, 1927. —, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Teubner, Leipzig, 1918. R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. M. G. Voronoï, Sur la développement, à l’aide des fonctions cylindriques, des sommes doubles $\Sigma f(p{m^2} + 2qmn + r{n^2})$, où $p{m^2} + 2qmn + r{n^2}$ est une forme positive à coefficients entiers (Verhandlungen des Dritten Internat. Math.-Kongr. Heidelberg), Teubner, Leipzig, 1905, pp. 241-245. Arnold Walfisz, Über die summatorischen Funktionen einiger Dirichletscher Reihen, Inaugural-Dissertation, Göttingen, 1922.
  • Arnold Walfisz, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern, Math. Z. 22 (1925), no. 1, 153–188 (German). MR 1544718, DOI 10.1007/BF01479601
  • Edmund Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962 (German). Herausgegeben von Arnold Walfisz. MR 0150109
  • G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 10H10, 30A16
  • Retrieve articles in all journals with MSC: 10H10, 30A16
Additional Information
  • © Copyright 1975 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 201 (1975), 247-261
  • MSC: Primary 10H10; Secondary 30A16
  • DOI: https://doi.org/10.1090/S0002-9947-1975-0352018-5
  • MathSciNet review: 0352018