Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ K$-groups generated by $ K$-spaces


Author: Eric C. Nummela
Journal: Trans. Amer. Math. Soc. 201 (1975), 279-289
MSC: Primary 22A05; Secondary 20E05
DOI: https://doi.org/10.1090/S0002-9947-1975-0352319-0
MathSciNet review: 0352319
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $ K$-group $ G$ with identity $ e$ is said to be generated by the $ K$-space $ X$ if $ X$ is a subspace of $ G$ containing $ e,X$ algebraically generates $ G$, and the canonical morphism from the Graev free $ K$-group over $ (X,e)$ on-to $ G$ is a quotient morphism. An internal characterization of the topology of such a group $ G$ is obtained, as well as a sufficient condition that a subgroup $ H$ of $ G$ be generated by a subspace $ Y$ of $ H$. Several illuminating examples are provided.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587-594. MR 25 #141. MR 0136676 (25:141)
  • [2] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [3] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 305-364. MR 10, 11. MR 0025474 (10:11d)
  • [4] W. F. LaMartin, $ k$-groups, Ph. D. Thesis, Tulane University, New Orleans, La., 1973.
  • [5] J. Mack, S. A. Morris and E. T. Ordman, Free topological groups and the projective dimension of a locally compact group, Proc. Amer. Soc. 40 (1973), 303-308. MR 0320216 (47:8755)
  • [6] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7. MR 0012301 (7:7b)
  • [7] M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273-298. MR 40 #4946. MR 0251719 (40:4946)
  • [8] J. Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284. MR 17, 994. MR 0077122 (17:994b)
  • [9] E. C. Nummela, Homological algebra of $ K$-modules (submitted).
  • [10] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 35 #970. MR 0210075 (35:970)
  • [11] R. M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. (Basel) 22 (1971), 545-555. MR 45 #9323. MR 0300277 (45:9323)
  • [12] D. Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83-94. MR 0338132 (49:2898)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A05, 20E05

Retrieve articles in all journals with MSC: 22A05, 20E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0352319-0
Keywords: $ K$-space, $ K$-group, free group
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society