A uniqueness theorem
Author:
Jessie Ann Engle
Journal:
Trans. Amer. Math. Soc. 201 (1975), 89-104
MSC:
Primary 28A70
DOI:
https://doi.org/10.1090/S0002-9947-1975-0355009-3
MathSciNet review:
0355009
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A Borel-regular Carathéodory outer measure on a separable metric space
, where
is invariant with respect to a family
of homeomorphisms from
onto
, is unique if
satisfies a
-
condition at one point in
and if
satisfies Condition I, a condition much weaker than, but related to, the invariance of distance under
.
- [1] J. A. Engle, Haar measure on left-continuous groups and a related uniqueness theorem, Doctoral Dissertation, Ohio State University, Columbus, Ohio, 1971.
- [2] E. J. Mickle and T. Radó, A uniqueness theorem for Haar measure, Trans. Amer. Math. Soc. 93 (1959), 492-508. MR 22 #737. MR 0109852 (22:737)
- [3] -, On covering theorems, Fund. Math. 45 (1958), 325-331. MR 20 #5146. MR 0098691 (20:5146)
- [4]
A. P. Morse and J. F. Randolph, The
rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236-305. MR 5, 232. MR 0009975 (5:232a)
- [5] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A70
Retrieve articles in all journals with MSC: 28A70
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1975-0355009-3
Article copyright:
© Copyright 1975
American Mathematical Society