Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of nested spaces


Authors: T. B. Muenzenberger and R. E. Smithson
Journal: Trans. Amer. Math. Soc. 201 (1975), 57-87
MSC: Primary 54F05
DOI: https://doi.org/10.1090/S0002-9947-1975-0355995-1
MathSciNet review: 0355995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The structure of nested spaces is studied in this paper using such tools as branches, chains, partial orders, and rays in the context of semitrees. A classification scheme for various kinds of acyclic spaces is delineated in terms of semitrees. Several families of order compatible topologies for semitrees are investigated, and these families are grouped in a spectrum (inclusion chain) of topologies compatible with the semitree structure. The chain, interval, and tree topologies are scrutinized in some detail. Several topological characterizations of semitrees with certain order compatible topologies are also derived.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Arens, On the construction of linear homogeneous continua, Bol. Soc. Mat. Mexicana 2 (1945), 33-36. MR 7, 277. MR 0014390 (7:277f)
  • [2] D. P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach, Pacific J. Math. 47 (1973), 303-309. MR 0331345 (48:9679)
  • [3] K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. Cl. III 2 (1954), 17-20. MR 16, 275. MR 0064393 (16:275h)
  • [4] J. J. Charatonik, On ramification points in the classical sense, Fund. Math. 51 (1962/63), 229-252. MR 26 #743. MR 0143183 (26:743)
  • [5] J. J. Charatonik and C. A. Eberhart, On smooth dendroids, Fund. Math. 67 (1970), 297-322. MR 43 #1129. MR 0275372 (43:1129)
  • [6] -, On contractible dendroids, Colloq. Math. 25 (1972), 89-98, 164. MR 46 #8193. MR 0309082 (46:8193)
  • [7] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [8] O. Frink, Jr., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-582. MR 3, 313. MR 0006496 (3:313b)
  • [9] R. W. Hansell, Monotone subnets in partially ordered sets, Proc. Amer. Math. Soc. 18 (1967), 854-858. MR 35 #6594. MR 0215759 (35:6594)
  • [10] J. K. Harris, Order structures for certain acyclic topological spaces, Thesis, University of Oregon, 1962.
  • [11] W. Holsztyński, Fixed points of arcwise connected spaces, Fund. Math. 64 (1969), 289-312. MR 40 #2008. MR 0248757 (40:2008)
  • [12] S. Mardešić, A locally connected continuum which contains no proper locally connected subcontinuum, Glasnik Mat. Ser. III 2 (22) (1967), 167-178. MR 36 #4526. MR 0221474 (36:4526)
  • [13] L. K. Mohler, Partial orders and the fixed point property for hereditarily unicoherent continua, Thesis, University of Oregon, 1968.
  • [14] -, A fixed point theorem for continua which are hereditarily divisible by points, Fund. Math. 67 (1970), 345-358. MR 41 #6196. MR 0261583 (41:6196)
  • [15] T. B. Muenzenberger and R. E. Smithson, Fixed point structures, Trans. Amer. Math. Soc. 184 (1973), 153-173. MR 0328900 (48:7242)
  • [16] -, Mobs and semitrees, J. Austral. Math. Soc. (to appear).
  • [17] -, Refluent multifunction on semitrees, Proc. Amer. Math. Soc. 44 (1974), 189-195. MR 0341462 (49:6213)
  • [18] T. Naito, On a problem of Wolk in interval topologies, Proc. Amer. Math. Soc. 11 (1960), 156-158. MR 22 #1528. MR 0110653 (22:1528)
  • [19] R. L. Plunkett, A fixed point theorem for continuous multi-valued transformations, Proc. Amer. Math. Soc. 7 (1956), 160-163. MR 19, 301. MR 0087094 (19:301a)
  • [20] R. E. Smithson, A note on acyclic continua, Colloq. Math. 19 (1968), 67-71. MR 37 #2190. MR 0226601 (37:2190)
  • [21] -, Topologies generated by relations, Bull. Austral. Math. Soc. 1 (1969), 297-306. MR 41 #2605. MR 0257956 (41:2605)
  • [22] L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, Rinehart, and Winston, New York, 1970. MR 42 #1040. MR 0266131 (42:1040)
  • [23] L. B. Treybig, Concerning homogeneity in totally ordered, connected topological space, Pacific J. Math. 13 (1963), 1417-1421. MR 28 #2526. MR 0159309 (28:2526)
  • [24] L. E. Ward, Jr., A note on dendrites and trees, Proc. Amer. Math. Soc. 5 (1954), 992-994. MR 17, 180. MR 0071759 (17:180c)
  • [25] L. E. Ward, Jr., Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8 (1975), 789-804. MR 20 #3516. MR 0097036 (20:3516)
  • [26] -, On dendritic sets, Duke Math. J. 25 (1958), 505-513. MR 20 #4818. MR 0098357 (20:4818)
  • [27] -, A fixed point theorem for multi-valued functions, Pacific J. Math. 8 (1958), 921-927. MR 21 #2215. MR 0103446 (21:2215)
  • [28] -, A fixed point theorem for chained spaces, Pacific J. Math. 9 (1959), 1273-1278. MR 21 #7496. MR 0108784 (21:7496)
  • [29] -, Characterization of the fixed point property for a class of set-valued mappings, Fund. Math. 50 (1961/62), 159-164. MR 24 #A2956. MR 0133122 (24:A2956)
  • [30] -, Topology, Marcel Dekker, New York, 1972. MR 0467643 (57:7498)
  • [31] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math Soc., Providence, R. I., 1942. MR 4, 86. MR 0007095 (4:86b)
  • [32] E. S. Wolk, Order-compatible topologies on a partially ordered set, Proc. Amer. Math. Soc. 9 (1958), 524-529. MR 20 #3079. MR 0096596 (20:3079)
  • [33] -, On partially ordered sets possessing a unique order-compatible topology, Proc. Amer. Math. Soc. 11 (1960), 487-492. MR 22 #2568. MR 0111706 (22:2568)
  • [34] G. S. Young, Jr., The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479-494. MR 8, 49. MR 0016663 (8:49c)
  • [35] -, Fixed point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880-884. MR 22 #8486. MR 0117711 (22:8486)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F05

Retrieve articles in all journals with MSC: 54F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0355995-1
Keywords: Acyclic spaces, arboroids, arcs, box topology, branches, chain topology, combs, fans, nested spaces, order compatible topologies, partially ordered spaces, semitrees, trees
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society