Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A homotopy theory of pro-spaces


Author: Jerrold W. Grossman
Journal: Trans. Amer. Math. Soc. 201 (1975), 161-176
MSC: Primary 55D05
MathSciNet review: 0356039
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The category of towers of spaces, $ \ldots \to {X_{s + 1}} \to {X_s} \to \ldots \to {X_0}$, viewed as pro-spaces, appears to be useful in the study of the relation between homology and homotopy of nonsimply connected spaces. We show that this category admits the structure of a closed model category, in the sense of Quillen; notions of fibration, cofibration, and weak equivalence are defined and shown to satisfy fundamental properties that the corresponding notions satisfy in the category of spaces. This enables one to develop a ``homotopy theory'' for pro-spaces.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin and B. Mazur, Étale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
  • [2] A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR 0365573 (51:1825)
  • [3] E. Dror, Pro-nilpotent representation of homology types, Proc. Amer. Math. Soc. 38 (1973), 657-660. MR 0314041 (47:2593)
  • [4] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942. MR 0222892 (36:5942)
  • [5] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., no. 43, Springer-Verlag, Berlin and New York, 1967. MR 36 #6480. MR 0223432 (36:6480)
  • [6] D. G. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 41 #2678. MR 0258031 (41:2678)
  • [7] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55D05

Retrieve articles in all journals with MSC: 55D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0356039-8
Keywords: Pro-space, pro-map, tower of spaces, model category, weak equivalence, fibration, cofibration
Article copyright: © Copyright 1975 American Mathematical Society