Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Relationships between $ \lambda $-nuclearity and pseudo-$ \mu $-nuclearity


Author: William B. Robinson
Journal: Trans. Amer. Math. Soc. 201 (1975), 291-303
MSC: Primary 46A45; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9947-1975-0365086-1
MathSciNet review: 0365086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for any Köthe space $ \lambda $, $ \lambda $-nuclearity coincides with pseudo- $ \lambda {\lambda ^ \times }$-nuclearity. More particular results, including a Grothendieck-Pietsch criterion for $ \lambda $-nuclearity of sequence spaces, are given for Köthe spaces which are regular.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. MR 39 #1935. MR 0240588 (39:1935)
  • [2] V. S. Brudovskiĭ, Associated nuclear topology, mappings of type $ s$, and strongly nuclear spaces, Dokl. Akad. Nauk SSSR 178 (1968), 271-273 = Soviet Math. Dokl. 9 (1968), 61-63. MR 37 #1952. MR 0226362 (37:1952)
  • [3] G. Crofts, Concerning perfect Fréchet spaces and diagonal transformations, Math. Ann. 182 (1969), 67-76. MR 40 #3256. MR 0250015 (40:3256)
  • [4] L. Crone and W. B. Robinson, Diameters and diagonal maps in Köthe spaces (to appear).
  • [5] M. M. Dragilev, On regular bases in nuclear spaces, Mat. Sb. 68 (110) (1965), 153-173; English transl., Amer. Math. Soc. Transl. (2) 93 (1970), 61-82. MR 33 #536; 42 #4. MR 0192310 (33:536)
  • [6] E. Dubinsky and M. S. Ramanujan, On $ \lambda $-nuclearity, Mem. Amer. Math. Soc. No. 128 (1972). MR 0420215 (54:8229)
  • [7] G. Köthe, Topologische Lineare Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960. MR 24 #A411. MR 0130551 (24:A411)
  • [8] -, Stark nukleare Folgenräume, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 291-296. MR 43 #6689. MR 0280970 (43:6689)
  • [9] -, Über nukleare Folgenräume, Studia Math. 31 (1968), 267-271. MR 38 #4946. MR 0236651 (38:4946)
  • [10] A. Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe der Institute für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin, Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965. MR 31 #6114. MR 0181888 (31:6114)
  • [11] A. Persson and A. Pietsch, $ p$-nukleare and $ p$-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62. MR 39 #4645. MR 0243323 (39:4645)
  • [12] M. S. Ramanujan, Generalized nuclear maps in normed linear spaces, J. Reine Angew. Math. 244 (1970), 190-197. MR 42 #5016. MR 0270123 (42:5016)
  • [13] -, Power series spaces $ \Lambda (\alpha )$ and associated $ \Lambda (\alpha )$-nuclearity, Math. Ann. 189 (1970), 161-168. MR 42 #5003. MR 0270110 (42:5003)
  • [14] W. B. Robinson, On $ {\Lambda _1}(\alpha )$-nuclearity, Duke Math. J. 40 (1973), 541-546. MR 0320703 (47:9238)
  • [15] T. Terzioğlu, Smooth sequence spaces and associated nuclearity, Proc. Amer. Math. Soc. 37 (1973), 497-504. MR 0324372 (48:2724)
  • [16] V. P. Zaharjuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201-221. MR 0330991 (48:9326)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A45, 47B10

Retrieve articles in all journals with MSC: 46A45, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0365086-1
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society