Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the decomposition of tensor products of principal series representations for real-rank one semisimple groups


Author: Robert Paul Martin
Journal: Trans. Amer. Math. Soc. 201 (1975), 177-211
MSC: Primary 22E45
DOI: https://doi.org/10.1090/S0002-9947-1975-0374341-0
MathSciNet review: 0374341
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected semisimple real-rank one Lie group with finite center. It is shown that the decomposition of the tensor product of two representations from the principal series of $ G$ consists of two pieces, $ {T_c}$ and $ {T_d}$, where $ {T_c}$ is a continuous direct sum with respect to Plancherel measure on $ \hat G$ of representations from the principal series only, occurring with explicitly determined multiplicities, and $ {T_d}$ is a discrete sum of representations from the discrete series of $ G$, occurring with multiplicities which are, for the present, undetermined.


References [Enhancements On Off] (What's this?)

  • [1] N. Anh, Restriction of the principal series of SL$ (n,{\mathbf{C}})$ to some reductive subgroups, Pacific J. Math. 38 (1971), 295-313. MR 0327980 (48:6322)
  • [2] C. Chevalley, Theory of Lie groups. Vol. I, Princeton Math. Ser., vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412.
  • [3] E. G. Effros, Transformation groups and $ {C^ \ast }$-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 30 #5175. MR 0174987 (30:5175)
  • [4] J. Ernest, A decomposition theory for unitary representations of locally compact groups, Trans. Amer. Math. Soc. 104 (1962), 252-277. MR 25 #3383. MR 0139959 (25:3383)
  • [5] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [6] K. Johnson, Composition series and intertwining operators for the spherical principal series. II (to appear). MR 0385012 (52:5882)
  • [7] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions, Ann. Sci. École Norm. Sup. 5 (1972), 459-516. MR 0342641 (49:7387)
  • [8] A. W. Knapp and E. M. Stein, Intertwining operators for semi-simple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [9] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642. MR 39 #7031. MR 0245725 (39:7031)
  • [10] R. A. Kunze and E. M. Stein, Uniformly bounded representations. III: Intertwining operators for the principal series on semi-simple groups, Amer. J. Math. 89 (1967), 385-442. MR 38 #269. MR 0231943 (38:269)
  • [11] R. L. Lipsman, On the characters and equivalence of continuous series representations, J. Math. Soc. Japan 23 (1971), 452-480. MR 44 #6906. MR 0289718 (44:6906)
  • [12] G. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [13] -, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221. MR 15, 101. MR 0056611 (15:101a)
  • [14] M. A. Naĭmark, Decomposition of the tensor product of irreducible representations of the proper Lorentz group into irreducible representations, Trudy Moskov. Mat. Obšč. 8 (1959), 121-153; English transl., Amer. Math. Soc. Transl. (2) 36 (1964), 101-136. MR 22 #4966. MR 0114139 (22:4966)
  • [15] L. Pukánszky, On the Kronecker products of irreducible representations of the $ 2 \times 2$ real unimodular group. I, Trans. Amer. Math. Soc. 100 (1961), 116-152. MR 30 #3177. MR 0172962 (30:3177)
  • [16] P. J. Sally, Jr., Analytic continuation of the irreducible unitary representations of the universal covering group of SL$ (2,R)$, Mem. Amer. Math. Soc. No. 69 (1967). MR 38 #3380. MR 0235068 (38:3380)
  • [17] G. Warner, Harmonic analysis on semi-simple Lie groups. Vols. 1, 2, Die Grundlehren der math. Wissenschaften, Bände 188, 189, Springer-Verlag, Berlin and New York, 1972.
  • [18] F. Williams, Tensor products of principal series representations, Lecture Notes in Math., vol. 358, Springer-Verlag, Berlin and New York, 1973. MR 0349903 (50:2396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45

Retrieve articles in all journals with MSC: 22E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0374341-0
Keywords: Semisimple Lie groups, irreducible unitary representations, cuspidal parabolic subgroups, principal series, discrete series, tensor products
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society