Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The algebraic EHP sequence


Author: William M. Singer
Journal: Trans. Amer. Math. Soc. 201 (1975), 367-382
MSC: Primary 55H15; Secondary 18G15, 55E35
DOI: https://doi.org/10.1090/S0002-9947-1975-0385861-7
MathSciNet review: 0385861
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be the dual of the $ \bmod - 2$ Steenrod algebra. If $ M,N$, are graded unstable $ A$-comodules, one can define and compute the derived functors $ {\text{Coext} _A}(M,N)$ using unstable injective resolutions of $ N$. Bousfield and Curtis have shown that these unstable Coext groups can be fit into a long exact ``EHP sequence", an algebraic analogue of the EHP sequence of homotopy theory. Our object in the present paper is to study the relationship between the $ E,H$, and $ P$ homomorphisms and the composition pairing $ {\text{Coext} _A}(N,R) \otimes {\text{Coext} _A}(M,N) \to {\text{Coext} _A}(M,R)$. Among our results is a formula that measures the failure of the composition product to commute.


References [Enhancements On Off] (What's this?)

  • [1] M. G. Barratt, Note on a formula due to Toda, J. London Math. Soc. 36 (1961), 95-96. MR 23 #A2881; errata 25, 1242. MR 0125582 (23:A2881)
  • [2] M. G. Barratt and P. J. Hilton, On join operations in homotopy groups, Proc. London Math. Soc. (3) 3 (1953), 430-445. MR 15, 643. MR 0060232 (15:643a)
  • [3] A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457-479. MR 42 #2488. MR 0267586 (42:2488)
  • [4] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, The $ \bmod - p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 33 #8002. MR 0199862 (33:8002)
  • [5] E. B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107-209. MR 43 #5529. MR 0279808 (43:5529)
  • [6] V. K. A. M. Gugenheim, On a theorem of E. H. Brown, Illinois J. Math. 4 (1960), 292-311. MR 22 #2990. MR 0112135 (22:2990)
  • [7] P. J. Hilton, On the Hopf invariant of a composition element, J. London Math. Soc. 29 (1954), 165-171. MR 15, 734. MR 0060828 (15:734d)
  • [8] D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363-365. MR 45 #9317. MR 0300271 (45:9317)
  • [9] W. S. Massey and F. P. Peterson, The $ \bmod 2$ cohomology structure of certain fiber spaces, Mem. Amer. Math. Soc. No. 74 (1967). MR 37 #2226. MR 0226637 (37:2226)
  • [10] J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. MR 20 #6092. MR 0099653 (20:6092)
  • [11] N. E. Steenrod, Cohomology operations, revised by D. B. A. Epstein, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)
  • [12] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #777. MR 0143217 (26:777)
  • [13] -, Reduced join and Whitehead product, J. Inst. Polytech. Osaka City Univ. Ser. A 8 (1957), 15-30. MR 19, 159. MR 0086298 (19:159b)
  • [14] J. S. P. Wang, On the cohomology of the $ \bmod - 2$ Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490. MR 35 #4917. MR 0214065 (35:4917)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55H15, 18G15, 55E35

Retrieve articles in all journals with MSC: 55H15, 18G15, 55E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0385861-7
Keywords: Cohomology of the Steenrod algebra, unstable Adams spectral sequence
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society