Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Binomial enumeration on dissects


Author: Michael Henle
Journal: Trans. Amer. Math. Soc. 202 (1975), 1-39
MSC: Primary 05A15
DOI: https://doi.org/10.1090/S0002-9947-1975-0357133-8
MathSciNet review: 0357133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Mullin-Rota theory of binomial enumeration is generalized to an abstract context and applied to rook polynomials, order invariants of posets, Tutte invariants of combinatorial geometries, cycle indices and symmetric functions.


References [Enhancements On Off] (What's this?)

  • [1] G. Andrews, On the foundations of combinatorial theory. V: Eulerial differential operators, Studies in Appl. Math. 50 (1971), 345-375. MR 0309740 (46:8845)
  • [2] T. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235-282. MR 46 #8869. MR 0309764 (46:8869)
  • [3] P. Doubilet, On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy (preprint). MR 0429577 (55:2589)
  • [4] H. O. Foulkes, Differential operators associated with $ S$-functions, J. London Math. Soc. 24 (1949), 136-143. MR 11, 4. MR 0030500 (11:4h)
  • [5] A. Garsia, An expose of the Mullin-Rota theory of polynomials of binomial type, J. Multilinear Algebra (1973).
  • [6] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447. MR 17, 345. MR 0072878 (17:345e)
  • [7] M. Henle, Dissection of generating functions, Studies in Appl. Math. 51 (1972), 397-410. MR 0351833 (50:4321)
  • [8] D. E. Littlewood, The theory of group characters and matrix representations of groups, Oxford Univ. Press, Oxford, 1940. MR 2, 3. MR 0002127 (2:3a)
  • [9] P. MacMahon, Combinatory analysis, Chelsea, New York, 1960. MR 25 #5003. MR 0141605 (25:5003)
  • [10] R. Mullin and G.-C. Rota, On the foundations of combinatorial theory, III: Theory of binomial enumeration, Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969), Academic Press, New York, 1970, pp. 107-213. MR 43 #65. MR 0274300 (43:65)
  • [11] O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933) 559-584. MR 1501703
  • [12] R. C. Read, The use of $ S$-functions in combinatorial analysis, Canad. J. Math. 20 (1968), 808-841. MR 37 #5108. MR 0229534 (37:5108)
  • [13] J. Riordan, An introduction to combinatorial analysis, Wiley Publ. in Math. Statist., Wiley, New York, 1958. MR 20 #3077. MR 0096594 (20:3077)
  • [14] G.-C. Rota, On the foundations of combinatorial theory. VIII: Finite operator calculus, J. Math. Anal. Appl. 42 (1973). MR 0345826 (49:10556)
  • [15] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. No. 119 (1972). MR 0332509 (48:10836)
  • [16] -, Theory and applications of plane partitions. I, Studies in Appl. Math. 50 (1971), 167-188. MR 0325407 (48:3754)
  • [17] -, A Brylawski decomposition for finite ordered sets, Discrete Math. 4 (1973), 77-82. MR 46 #8918. MR 0309813 (46:8918)
  • [18] P. Doubilet, G.-C. Rota and R. Stanley, On the foundations of combinatorial theory. VI: The idea of generating function, Sixth Berkeley Sympos., Univ. of California Press, Berkeley, Calif., 1972. MR 0403987 (53:7796)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05A15

Retrieve articles in all journals with MSC: 05A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0357133-8
Keywords: Incidence algebra, symmetric functions
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society