Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Presentations of $ n$-knots


Author: C. Kearton
Journal: Trans. Amer. Math. Soc. 202 (1975), 123-140
MSC: Primary 57C45
MathSciNet review: 0358795
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The method of critical level embeddings is used to generalize the technique of knot presentations from the classical case to the case of $ n$-knots. For $ n > 3$, it is shown that an $ n$-knot with algebraically simple complement has a correspondingly simple presentation.


References [Enhancements On Off] (What's this?)

  • [1] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340-356. MR 19, 53. MR 0085512 (19:53a)
  • [2] R. H. Fox, A quick trip through knot theory, Topology of $ 3$-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 25 #3522. MR 0140099 (25:3522)
  • [3] J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969. MR 40 #2094. MR 0248844 (40:2094)
  • [4] M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. (2) 82 (1965), 1-14. MR 32 #460. MR 0182978 (32:460)
  • [5] C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952-955. MR 0324706 (48:3056)
  • [6] C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415-424. MR 46 #9997. MR 0310899 (46:9997)
  • [7] M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32 #6479. MR 0189052 (32:6479)
  • [8] J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9-16. MR 31 #4045. MR 0179803 (31:4045)
  • [9] -, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 34 #808. MR 0200922 (34:808)
  • [10] -, An algebraic classification of some knots of codimension two, Comment Math. Helv. 45 (1970), 185-198. MR 42 #1133. MR 0266226 (42:1133)
  • [11] C. P. Rourke, Embedded handle theory, concordance and isotopy, Warwick University (preprint). MR 0279816 (43:5537)
  • [12] G. Torres and R. H. Fox, Dual presentations of the group of a knot, Ann. of Math. (2) 59 (1954), 211-218. MR 15, 979. MR 0062439 (15:979b)
  • [13] H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner, Leipzig, 1937; English transl., Chelsea, New York, 1949. MR 11, 77.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57C45

Retrieve articles in all journals with MSC: 57C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0358795-1
Keywords: $ n$-knot, knot presentation
Article copyright: © Copyright 1975 American Mathematical Society