Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

One-dimensional polyhedral irregular sets of homomorphisms of $ 3$-manifolds


Authors: L. S. Husch and W. H. Row
Journal: Trans. Amer. Math. Soc. 202 (1975), 299-323
MSC: Primary 57A10
MathSciNet review: 0372861
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Examples are given to show that there exist homeomorphisms of open $ 3$-manifolds whose sets of irregular points are wildly embedded one-dimensional polyhedra. The main result of the paper is that a one-dimensional polyhedral set of irregular points can fail to be locally tame on, at most, a discrete subset of the set of points of order greater than one. Necessary and sufficient conditions are given so that the set of irregular points is locally tame at each point.


References [Enhancements On Off] (What's this?)

  • [1] M. Brown, The monotone union of open $ n$-cells is an open $ n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814. MR 23 #A4129. MR 0126835 (23:A4129)
  • [2] J. Cheeger and J. M. Kister, Counting topological manifolds, Topology 9 (1970), 149-151. MR 41 #1055. MR 0256399 (41:1055)
  • [3] P. F. Duvall, Jr. and L. S. Husch, Taming irregular sets of homeomorphisms, Bull. Amer. Math. Soc. 78 (1972), 77-79. MR 44 #7561. MR 0290377 (44:7561)
  • [4] -, Analysis on topological manifolds, Fund. Math. 57 (1972), 75-90. MR 0367952 (51:4194)
  • [5] -, Regular properly discontinuous $ {Z^n}$ actions on open manifolds, Illinois J. Math. 17 (1973), 290-300. MR 0319208 (47:7753)
  • [6] -, Homeomorphisms with polyhedral irregular sets. I, Trans. Amer. Math. Soc. 180 (1973), 389-406. MR 0321096 (47:9629)
  • [7] -, On the homotopy type of irregular sets, Proc. Amer. Math. Soc. 38 (1973), 419-422. MR 0312458 (47:1015)
  • [8] C. H. Edwards, Jr., Concentricity in $ 3$-manifolds, Trans. Amer. Math. Soc. 113 (1964), 406-432. MR 31 #2716. MR 0178459 (31:2716)
  • [9] H. Freudenthal, Über die Enden topologischer Raume und Gruppen, Math. Z. 33 (1931), 692-713. MR 1545233
  • [10] W. Haken, Some results on surfaces in $ 3$-manifolds, Studies in Modern Topology, Math. Assoc. Amer., distributed by Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR 36 #7118. MR 0224071 (36:7118)
  • [11] -, Erratum for some results on surfaces in $ 3$-manifolds (to appear).
  • [12] T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29-38. MR 16, 1140. MR 0070159 (16:1140a)
  • [13] J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745. MR 29 #4063. MR 0166790 (29:4063)
  • [14] L. S. Husch, A homotopy theoretic characterization of the translation in $ {E^n}$, Compositio Math. 24 (1972), 55-61. MR 0339248 (49:4009)
  • [15] -, Equicontinuous commutative semigroups of onto functions, Czechoslovak Math. J. 23 (1973), 45-49. MR 0317306 (47:5853)
  • [16] L. S. Husch and T. M. Price, Finding a boundary for a $ 3$-manifold, Ann. of Math. (2) 91 (1970), 223-235. MR 41 #9269. MR 0264678 (41:9269)
  • [17] S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6. MR 36 #5908. MR 0222858 (36:5908)
  • [18] B. V. Kerékjártó, Topologische Characterisierungen der linearen Abbildungen, Acta Litt. ac. Sci. Szeged 6 (1934), 235-262.
  • [19] R. C. Lacher, Maps which preserve the structure of a space at infinity (to appear).
  • [20] D. R. McMillan, Jr., Some contractible open $ 3$-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373-382. MR 25 #561. MR 0137105 (25:561)
  • [21] -, Local properties of the embedding of a graph in a three-manifold, Canad. J. Math. 18 (1966), 517-528. MR 34 #6754. MR 0206938 (34:6754)
  • [22] -, Compact acyclic subsets of three-manifolds, Michigan Math. J. 16 (1969), 129-136. MR 39 #4822. MR 0243501 (39:4822)
  • [23] -, UV properties and related topics (to appear).
  • [24] D. R. McMillan, Jr. and Harry Row, Tangled embedding of one dimensional continua, Proc. Amer. Math. Soc. 22 (1969), 378-385. MR 39 #7571. MR 0246267 (39:7571)
  • [25] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 0090053 (19:761a)
  • [26] J. P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505. MR 13, 574. MR 0045386 (13:574g)
  • [27] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [28] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0372861-6
Article copyright: © Copyright 1975 American Mathematical Society