Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Primitive ideals of twisted group algebras


Author: Otha L. Britton
Journal: Trans. Amer. Math. Soc. 202 (1975), 221-241
MSC: Primary 43A20
DOI: https://doi.org/10.1090/S0002-9947-1975-0374815-2
MathSciNet review: 0374815
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: E. Effros and F. Hahn have conjectured that if $ (G,Z)$ is a second countable locally compact transformation group, with $ G$ amenable, then every primitive ideal of the associated $ {C^\ast }$-algebra arises as the kernel of an irreducible representation induced from a stability subgroup. Results of Effros and Hahn concerning this conjecture are extended to include the twisted group algebra $ {L^1}(G,A;T,\alpha )$, where $ A$ is a separable type I $ {C^\ast }$-algebra.


References [Enhancements On Off] (What's this?)

  • [1] O. L. Britton, Dual spaces and primitive ideal spaces of twisted group algebras, Doctoral Dissertation, Drexel University, Philadelphia, Pa., 1972.
  • [2] R. C. Busby, Double centralizers and extensions of $ {C^\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99. MR 37 #770. MR 0225175 (37:770)
  • [3] -, On a theorem of Fell, Proc. Amer. Math. Soc. 30 (1971), 133-140. MR 44 #814. MR 0283583 (44:814)
  • [4] R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 41 #9013. MR 0264418 (41:9013)
  • [5] J. Dixmier, Les $ {C^\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [6] E. G. Effros and F. Hahn, Locally compact transformation groups and $ {C^\ast }$-algebras, Mem. Amer. Math. Soc. No. 75 (1967). MR 37 #2895. MR 0227310 (37:2895)
  • [7] E. C. Gootman, Primitive ideals of $ {C^\ast }$-algebras associated with transformation groups, Trans. Amer. Math. Soc. 170 (1972), 97-108. MR 46 #1961. MR 0302818 (46:1961)
  • [8] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [9] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450. MR 0159233 (28:2450)
  • [10] H. Leptin, Darstellungen Verallgemeinerte $ {L^1}$-Algebren. II (to appear).
  • [11] -, Verallgemeinerte $ {L^1}$-Algebren, Math. Ann. 159 (1965), 51-76. MR 39 #1909.
  • [12] -, Verallgemeinerte $ {L^1}$-Algebren and projektive Darstellungen lokal kompakter Gruppen. I, Invent. Math. 3 (1967), 257-281. MR 37 #5328.
  • [13] -, Verallgemeinerte $ {L^1}$-Algebren and projective Darstellungen lokal kompakter Gruppen. II, Invent. Math. 4 (1967), 68-86. MR 37 #5328. MR 0229754 (37:5328)
  • [14] G. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [15] -, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [16] M. A. Naĭmark, Normed rings, 2nd rev. ed., ``Nauka", Moscow, 1968; English transl., Wolters-Noordhoff, Groningen, 1970. MR 0355601 (50:8075)
  • [17] M. Takesaki, Covariant representations of $ {C^\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303. MR 37 #774. MR 0225179 (37:774)
  • [18] G. Zeller-Meier, Produits croisés dans une $ {C^\ast }$-algèbre par un groupe d'automorphismes, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A20-A23. MR 33 #7877. MR 0199734 (33:7877)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A20

Retrieve articles in all journals with MSC: 43A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0374815-2
Keywords: Twisted group algebra, irreducible representation, induced representation, covariance algebra, group extension, transformation group, dual space
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society