A family of countably compact hypergroups
Authors:
Charles F. Dunkl and Donald E. Ramirez
Journal:
Trans. Amer. Math. Soc. 202 (1975), 339356
MSC:
Primary 43A10; Secondary 22A20
MathSciNet review:
0380267
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An infinite compact group is necessarily uncountable, by the Baire category theorem. A compact hypergroup, in which the product of two points is a probability measure, is much like a compact group, having an everywhere supported invariant measure, an orthogonal system of characters which span the continuous functions in the uniform topology, and a multiplicative semigroup of positivedefinite functions. It is remarkable that a compact hypergroup can be countably infinite. In this paper a family of such hypergroups, which include the algebra of measures on the adic integers which are invariant under the action of the units (for ) is presented. This is an example of the symmetrization technique. It is possible to give a nice characterization of the Fourier algebra in terms of a boundedvariation condition, which shows that the usual Banach algebra questions about the Fourier algebra, such as spectral synthesis, and Helson sets have easily determinable answers. Helson sets are finite, each closed set is a set of synthesis, the maximal ideal space is exactly the underlying hypergroup, and the functions that operate are exactly the Lip 1 functions.
 [1]
Charles
F. Dunkl, The measure algebra of a locally
compact hypergroup, Trans. Amer. Math. Soc.
179 (1973),
331–348. MR 0320635
(47 #9171), http://dx.doi.org/10.1090/S00029947197303206352
 [2]
Charles
F. Dunkl and Donald
E. Ramirez, Topics in harmonic analysis,
AppletonCenturyCrofts [Meredith Corporation], New York, 1971.
AppletonCentury Mathematics Series. MR 0454515
(56 #12766)
 [3]
Charles
F. Dunkl and Donald
E. Ramirez, Krawtchouk polynomials and the symmetrization of
hypergroups, SIAM J. Math. Anal. 5 (1974),
351–366. MR 0346213
(49 #10939)
 [4]
Helmut
Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren
der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer
Berücksightigung der Anwendungsgebiete. Band LIX, SpringerVerlag,
Berlin, 1950 (German). MR 0051844
(14,534c)
 [5]
René
Spector, Sur la structure locale des groupes abéliens
localement compacts, Bull. Soc. Math. France Suppl. Mém.
24 (1970), 94 (French). MR 0283498
(44 #729)
 [1]
 C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331348. MR 0320635 (47:9171)
 [2]
 C. F. Dunkl and D. E. Ramirez, Topics in harmonic analysis, AppletonCenturyCrofts, New York, 1971. MR 0454515 (56:12766)
 [3]
 , Krawtchouk polynomials and the symmetrization of hypergroups, SIAM J. Math. Anal. 5 (1974), 351366. MR 0346213 (49:10939)
 [4]
 H. Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren der math. Wissenschaften, Band 59, SpringerVerlag, Berlin, 1950. MR 14, 534. MR 0051844 (14:534c)
 [5]
 René Spector, Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math. France Suppl. Mém. 24 (1970), 94 pp. MR 44 #729. MR 0283498 (44:729)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
43A10,
22A20
Retrieve articles in all journals
with MSC:
43A10,
22A20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503802679
PII:
S 00029947(1975)03802679
Keywords:
Hypergroup,
Fourier algebra,
radial function,
adic integers
Article copyright:
© Copyright 1975 American Mathematical Society
