Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sequential convergence in the order duals of certain classes of Riesz spaces


Author: P. G. Dodds
Journal: Trans. Amer. Math. Soc. 203 (1975), 391-403
MSC: Primary 46A40
DOI: https://doi.org/10.1090/S0002-9947-1975-0358282-0
MathSciNet review: 0358282
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several results of Hahn-Vitali-Saks type are given for sequences in the order dual of an Archimedean Riesz space with separating order dual. The class of Riesz spaces considered contains those which are Dedekind $ \sigma $-complete, or have the projection property or have an interpolation property introduced by G. L. Seever. The results depend on recent work of O. Burkinshaw and some results of uniform boundedness type.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya, On a topological method in semi-ordered linear spaces, Proc. Japan. Acad. 27 (1951), 138-140. MR 14, 59. MR 0048717 (14:59c)
  • [2] -, On ordered topological linear spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1961), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 14-23. MR 25 #2411. MR 0138971 (25:2411)
  • [3] T. Andô, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395-404. MR 25 #1255. MR 0137806 (25:1255)
  • [4] O. Burkinshaw, Weak compactness in the order dual of an Archimedean Riesz space, Thesis, Purdue University, Lafayette, Ind., 1972.
  • [5] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1958. MR 20 #1187. MR 0094675 (20:1187)
  • [6] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, New York, 1974. MR 0454575 (56:12824)
  • [7] L. Gillman and M. Jerison, Rings of continuous functions, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [8] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [9] S. Kaplan, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259-298. MR 41 #5932. MR 0261317 (41:5932)
  • [10] W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. VIII-X, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 104-119, 360-376, 493-506. MR 28 #5324b; 30 #3381a, b. MR 0162125 (28:5324b)
  • [11] -, Riesz spaces. Vol. I, North-Holland, Amsterdam, 1971.
  • [12] L. C. Moore, Jr. and James C. Reber, Mackey topologies which are locally convex Riesz topologies, Duke Math. J. 39 (1972), 105-119. MR 45 #4113. MR 0295045 (45:4113)
  • [13] O. Nikodym, Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, C. R. Acad. Sci. Paris 192 (1931), 727-728.
  • [14] S. Saks, On some functionals, Trans. Amer. Math. Soc. 35 (1933), 549-556. MR 1501701
  • [15] G. L. Seever, Measures on $ F$-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280. MR 37 #1976. MR 0226386 (37:1976)
  • [16] B. B. Wells, Jr., Weak compactness of measures, Proc. Amer. Math. Soc. 20 (1969), 124-130. MR 38 #6343. MR 0238067 (38:6343)
  • [17] A. C. Zaanen, Integration, rev. ed., North-Holland, Amsterdam; Interscience, New York, 1967. MR 36 #5286. MR 0222234 (36:5286)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A40

Retrieve articles in all journals with MSC: 46A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0358282-0
Keywords: Archimedean Riesz spaces, order dual, sequential convergence, principal projection property, weak compactness
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society