Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An extremal length problem on a bordered Riemann surface


Author: Jeffrey Clayton Wiener
Journal: Trans. Amer. Math. Soc. 203 (1975), 227-245
MSC: Primary 30A48
DOI: https://doi.org/10.1090/S0002-9947-1975-0361054-4
MathSciNet review: 0361054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Partition the contours of a compact bordered Riemann surface $ R'$ into four disjoint closed sets $ {\alpha _0},{\alpha _1},{\alpha _2}$ and $ \gamma $ with $ {\alpha _0}$ and $ {\alpha _1}$ nonempty. Let $ F$ denote the family of all locally rectifiable $ 1$-chains in $ R' - \gamma $ which join $ {\alpha _0}$ to $ {\alpha _1}$. The extremal length problem on $ R'$ considers the existence of a real-valued harmonic function $ u$ on $ R'$ which is 0 on $ {\alpha _0},1$ on $ {\alpha _1}$, a constant on each component $ {\nu _k}$ of $ {\alpha _2}$ with $ {\smallint _{{\nu _k}}}^ \ast du = 0$ and $ ^ \ast du = 0$ along $ \gamma $ such that the extremal length of $ F$ is equal to the reciprocal of the Dirichlet integral of $ u$, that is, $ \lambda (F) = {D_{R'}}{(u)^{ - 1}}$.

Let $ \bar R$ denote a bordered Riemann surface with a finite number of boundary components and $ S$ a compactification of $ \bar R$ with the property that $ \partial \bar R \subset S$. We consider the extremal length problem on $ \bar R$ (as a subset of $ S$) when $ {\alpha _0},{\alpha _1}$, and $ {\alpha _2}$ are relatively closed subarcs of $ \partial \bar R$ and when $ {\alpha _0},{\alpha _1}$ and $ {\alpha _2}$ are closed subsets of $ \partial S = (S - \bar R) \cup \partial \bar R$.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill, New York, 1966. MR 32 #5844. MR 0188405 (32:5844)
  • [2] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Ser., no 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729. MR 0114911 (22:5729)
  • [3] J. A. Jenkins, Univalent functions and conformal mapping, 2nd ed., Springer-Verlag, Berlin and New York, 1965. MR 0096806 (20:3288)
  • [4] -, Lecture notes at Washington University, 1968-1969.
  • [5] A. Marden and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269. MR 34 #2862. MR 0203003 (34:2862)
  • [6] C. D. Minda, Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22. MR 0390208 (52:11034)
  • [7] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640. MR 0045823 (13:640h)
  • [8] B. Rodin and L. Sario, Principal functions, Van Nostrand, Princeton N. J., 1968. MR 37 #5378. MR 0229812 (37:5378)
  • [9] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 #8660. MR 0264064 (41:8660)
  • [10] L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der math. Wissenschaften, Band 149, Springer-Verlag, Berlin and New York; 1969. MR 40 #7441. MR 0254232 (40:7441)
  • [11] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 19, 1169. MR 0092855 (19:1169g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A48

Retrieve articles in all journals with MSC: 30A48


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0361054-4
Keywords: Extremal length, harmonic function, Kerékjártó-Stoilöw compactification, canonical exhaustion, double of a surface, regular exhaustion
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society