Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Asymptotic values of modulus $ 1$ of Blaschke products

Authors: K. K. Leung and C. N. Linden
Journal: Trans. Amer. Math. Soc. 203 (1975), 107-118
MSC: Primary 30A72; Secondary 30A76
MathSciNet review: 0361084
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition is found for each subproduct of a Blaschke product to have an asymptotic value of modulus 1 along a prescribed arc of a specified type in the unit disc. The condition obtained is found to be necessary in the case of further restrictions of the arc, and the two results give rise to a necessary and sufficient condition for the existence of $ {T_\gamma }$-limits of modulus 1 for Blaschke products.

References [Enhancements On Off] (What's this?)

  • [1] G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math. 14 (1962), 334–348. MR 0136743
  • [2] Otto Frostman, Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12 (1942), no. 15, 169–182 (French). MR 0012127
  • [3] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Bd. 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (German). MR 0089896
  • [4] C. N. Linden and H. Somadasa, On tangential limits of Blaschke products, Arch. Math. (Basel) 18 (1967), 416–424. MR 0233985
  • [5] David Protas, Tangential limits of Blaschke products and functions of bounded characteristic, Arch. Math. (Basel) 22 (1971), 631–641. MR 0299798

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A72, 30A76

Retrieve articles in all journals with MSC: 30A72, 30A76

Additional Information

Keywords: Blaschke products, $ {T_\gamma }$-limits
Article copyright: © Copyright 1975 American Mathematical Society