Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The regular ring and the maximal ring of quotients of a finite Baer $ \sp{\ast} $-ring


Author: Ernest S. Pyle
Journal: Trans. Amer. Math. Soc. 203 (1975), 201-213
MSC: Primary 16A28
DOI: https://doi.org/10.1090/S0002-9947-1975-0364338-9
MathSciNet review: 0364338
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are obtained for extending the involution of a Baer $ \ast $-ring to its maximal ring of quotients. Berberian's construction of the regular ring of a Baer $ \ast $-ring is generalized and this ring is identified (under suitable hypotheses) with the maximal ring of quotients.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, The regular ring a finite $ A{W^ \ast }$-algebra, Ph.D. Thesis, University of Chicago, Chicago, III., 1955.
  • [2] -, The regular ring of a finite Baer $ ^ \ast $-ring, J. Algebra 23 (1972), 35-65. MR 46 #7294. MR 0308179 (46:7294)
  • [3] -, Baer $ ^\ast $-rings, Springer-Verlag, New York, 1972.
  • [4] C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, Berlin and New York, 1967. MR 37 #2791. MR 0227206 (37:2791)
  • [5] R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895. MR 13, 618. MR 0045695 (13:618c)
  • [6] I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524-541. MR 19, 524. MR 0088476 (19:524f)
  • [7] -, Rings of operators, Benjamin, New York, 1968. MR 39 #6092. MR 0244778 (39:6092)
  • [8] E. S. Pyle, On maximal rings of quotients of finite Baer $ ^\ast $-rings, Ph.D. Thesis, University of Texas, Austin, Tex., 1972.
  • [9] J.-E. Roos, Sur l'anneau maximal de fractions des $ A{W^ \ast }$-algbrees et des anneaux de Baer, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A120-A123. MR 39 #6093.
  • [10] Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7. MR 0078966 (18:7c)
  • [11] -, On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147. MR 26 #137. MR 0142568 (26:137)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A28

Retrieve articles in all journals with MSC: 16A28


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0364338-9
Keywords: Baer $ \ast $-ring, maximal ring of quotients, regular ring of a Baer $ \ast $-ring, $ LP \sim RP$, (EP)-axiom, (SR)-axiom
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society