Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isolated invariant sets for flows on vector bundles


Author: James F. Selgrade
Journal: Trans. Amer. Math. Soc. 203 (1975), 359-390
MSC: Primary 58F20
DOI: https://doi.org/10.1090/S0002-9947-1975-0368080-X
Erratum: Trans. Amer. Math. Soc. 221 (1976), 249.
MathSciNet review: 0368080
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies isolated invariant sets for linear flows on the projective bundle associated to a vector bundle, e.g., the projective tangent flow to a smooth flow on a manifold. It is shown that such invariant sets meet each fiber, roughly in a disjoint union of linear subspaces. Isolated invariant sets which are intersections of attractors and repellers (Morse sets) are discussed. We show that, over a connected chain recurrent set in the base space, a Morse filtration gives a splitting of the projective bundle into a direct sum of invariant subbundles. To each factor in this splitting there corresponds an interval of real numbers (disjoint from those for other factors) which measures the exponential rate of growth of the orbits in that factor. We use these results to see that, over a connected chain recurrent set, the zero section of the vector bundle is isolated if and only if the flow is hyperbolic. From this, it follows that if no equation in the hull of a linear, almost periodic differential equation has a nontrivial bounded solution then the solution space of each equation has a hyperbolic splitting.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, $ K$-theory, 2nd ed., Benjamin, New York, 1967. MR 36 #7130. MR 0224083 (36:7130)
  • [2] R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330-352. MR 0336763 (49:1536)
  • [3] C. C. Conley, The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow, SIAM J. Appl. Math. 16 (1968), 620-625. MR 37 #3113. MR 0227529 (37:3113)
  • [4] -, On the continuation of invariant sets of a flow, Proc. Internat. Congress Math. (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, pp. 909-913. MR 0516921 (58:24389)
  • [5] -, On a generalization of the Morse index, Ordinary Differential Equations, 1971, NRL-MRC Conference (L. Weiss Ed.), Academic Press, New York, 1972, pp. 27-33. MR 0423418 (54:11397)
  • [6] -, The gradient structure of a flow. I, I.B.M. Research, RC 3932 (#17806), Yorktown Heights, New York, July 17, 1972.
  • [7] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61. MR 43 #5551. MR 0279830 (43:5551)
  • [8] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [9] R. W. Easton, On the existence of invariant sets inside a submanifold convex to a flow, J. Differential Equations 7 (1970), 54-68. MR 40 #2996. MR 0249755 (40:2996)
  • [10] -, Locating invariant sets, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 55-59. MR 42 #5287. MR 0270398 (42:5287)
  • [11] -, Regularization of vector fields by surgery, J. Differential Equations 10 (1971), 92-99. MR 47 #4290. MR 0315741 (47:4290)
  • [12] S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N.J., 1952. MR 14, 398. MR 0050886 (14:398b)
  • [13] D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821. MR 0229247 (37:4821)
  • [14] R. McGehee, Parabolic orbits in the three-body problem (to appear). MR 0344619 (49:9358)
  • [15] J. Montgomery, Cohomology of isolated invariant sets under perturbation, J. Differential Equations 13 (1973), 257-299. MR 0334173 (48:12492)
  • [16] V. V. Nemyckii and V. V. Stepanov, Qualitative theory of differential equations, OGIZ, Moscow, 1947; English transl., Princeton Math. Series, no. 22, Princeton Univ. Press, Princeton, N.J., 1960. MR 10, 612; 22 #12258. MR 0029483 (10:612h)
  • [17] D. Rod, Pathology of invariant sets in the monkey saddle, J. Differential Equations 14 (1973), 129-170. MR 0328220 (48:6562)
  • [18] R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential equations, J. Differential Equations 15 (1974), 429-458. MR 0341458 (49:6209)
  • [19] G. R. Sell, Topological dynamics and ordinary differential equations, Van Nostrand Reinhold, London, 1971. MR 0442908 (56:1283)
  • [20] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; erratum, 39, p. 1593. MR 0228014 (37:3598)
  • [21] J. A. Smoller and C. C. Conley, Viscosity matrices for two dimensional non-linear hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 867-884. MR 43 #714. MR 0274956 (43:714)
  • [22] -, Viscosity matrices for two dimensional non-linear hyperbolic systems. II, Amer. J. Math. 44 (1972), 631-650. MR 0320537 (47:9074)
  • [23] -, Shock waves as limits of progressive wave solutions of higher order equations, Comm. Pure Appl. Math. 25 (1972), 133-146. MR 0306721 (46:5843)
  • [24] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [25] T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313. MR 10, 122. MR 0026206 (10:122a)
  • [26] F. W. Wilson, Jr. and J. A. Yorke, Lyapunov functions and isolating blocks, J. Differential Equations 13 (1973), 106-123. MR 0385251 (52:6115)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20

Retrieve articles in all journals with MSC: 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0368080-X
Keywords: Isolated invariant set, vector bundle, associated projective bundle, linear flow, cross ratio, expansion point, isolating block, attractor, repeller, chain recurrence, Morse set, Morse decomposition, hyperbolic flow, almost periodic system
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society