Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ {\rm PL}$ involutions of $ S\sp{1}\times S\sp{1}\times S\sp{1}$


Authors: Kyung Whan Kwun and Jeffrey L. Tollefson
Journal: Trans. Amer. Math. Soc. 203 (1975), 97-106
MSC: Primary 57E25
DOI: https://doi.org/10.1090/S0002-9947-1975-0370634-1
MathSciNet review: 0370634
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the $ 3$-dimensional torus $ {S^1} \times {S^1} \times {S^1}$ admits exactly nine nonequivalent PL involutions. With the exception of the four fixed point free ones, the involutions may be distinguished by their fixed point sets: (1) eight points, (2) two simple closed curves, (3) four simple closed curves, (4) one torus, (5) two tori.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Brown, Unknotting in $ {M^2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505. MR 33 #6640. MR 0198482 (33:6640)
  • [2] P. E. Conner, Transformation groups on a $ K(\pi ,1)$. II, Michigan Math. J. 6 (1959), 413-417. MR 23 #A662. MR 0123334 (23:A662)
  • [3] John Hempel, Free cyclic actions on $ {S^1} \times {S^1} \times {S^1}$ (to appear).
  • [4] P. K. Kim and J. L. Tollefson, PL involutions of fibered $ 3$-manifolds (to appear).
  • [5] K. W. Kwun, Sense-preserving PL involutions of some lens spaces, Michigan Math. J. 20 (1973), 73-77. MR 46 #9963. MR 0310865 (46:9963)
  • [6] K. W. Kwun and J. L. Tollefson, Uniqueness of orientation preserving PL involutions of $ {R^3}$, Bull. Amer. Math. Soc. 79 (1973), 761-762. MR 0317329 (47:5876)
  • [7] H. Seifert, Topologie driedimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238. MR 1555366
  • [8] D. K. Showers, Thesis, Michigan State University, 1973.
  • [9] J. L. Tollefson, Involutions on $ {S^1} \times {S^2}$ and other $ 3$-manifolds, Trans. Amer. Math. Soc. 183 (1974), 139-152. MR 0326738 (48:5081)
  • [10] F. Waldhausen, Gruppen mit Zentrum und $ 3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223. MR 0236930 (38:5223)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E25

Retrieve articles in all journals with MSC: 57E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0370634-1
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society