Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Torus actions on a cohomology product of three odd spheres


Author: Christopher Allday
Journal: Trans. Amer. Math. Soc. 203 (1975), 343-358
MSC: Primary 57E25
DOI: https://doi.org/10.1090/S0002-9947-1975-0377953-3
MathSciNet review: 0377953
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this paper is to describe how a torus group may act on a space, $ X$, whose rational cohomology ring is isomorphic to that of a product of three odd-dimensional spheres, in such a way that the fixed point set is nonempty, and $ X$ is not totally nonhomologous to zero in the associated $ X$-bundle, $ {X_T} \to {B_T}$. In the first section of the paper some general results on the cohomology theory of torus actions are established. In the second section the cohomology theory of the above type of action is described; and in the third section the results of the first two sections are used to prove a Golber formula for such actions, which, under certain conditions, bears an interesting interpretation in terms of rational homotopy.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Allday, A note on a theorem of W.-Y. Hsiang, University of Hawaii, 1972 (preprint).
  • [2] C. J. Allday and T. Skjelbred, The Borel formula and the topological splitting principle for torus actions on a Poincaré duality space, Ann. of Math. (2) 100 (1974), 322-325. MR 0375358 (51:11553)
  • [3] A. Borel et al., Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #7129. MR 0116341 (22:7129)
  • [4] N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algébre commutative, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [5] G. E. Bredon, Fixed point sets of actions on Poincaré duality spaces, Topology 12 (1973), 159-175. MR 0331375 (48:9708)
  • [6] -, Homotopical properties of fixed point sets of circle group actions. I, Amer. J. Math. 91 (1969), 874-888. MR 41 #4534. MR 0259905 (41:4534)
  • [7] -, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [8] T. Chang and T. Skjelbred, Group actions on Poincaré duality spaces, Bull. Amer. Math. Soc. 78 (1972), 1024-1026. MR 46 #6346. MR 0307226 (46:6346)
  • [9] -, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321. MR 0375357 (51:11552)
  • [10] D. Golber, Torus actions on a product of two odd spheres, Topology 10 (1971), 313-326. MR 44 #1024. MR 0283794 (44:1024)
  • [11] W.-Y. Hsiang, On generalizations of a theorem of A. Borel and their applications in the study of topological actions, Topology of Manifolds, Markham, Chicago, Ill., 1970.
  • [12] -, On some fundamental theorems in cohomology theory of topological transformation groups, Taita J. Math. 2 (1970), 61-87. MR 46 #8247; A summary of these results may be found in: Some fundamental theorems in cohomology theory of topological transformation groups, Bull. Amer. Math. Soc. 77 (1971), 1094-1098. MR 46 #8249. MR 0309139 (46:8249)
  • [13] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 0349792 (50:2285)
  • [14] D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572. MR 45 #7743. MR 0298694 (45:7743)
  • [15] J.-P. Serre, Algèbre locale. Multiplicités, 2ième éd., Lecture Notes in Math., no. 11, Springer-Verlag, Berlin and New York, 1965. MR 34 #1352. MR 0201468 (34:1352)
  • [16] T. Skjelbred, Thesis, University of California, Berkeley, Calif., 1972.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E25

Retrieve articles in all journals with MSC: 57E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0377953-3
Keywords: Torus actions, equivariant cohomology, Golber formula
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society