AUTOMORPHISMS OF COMMUTATIVE RINGS(1)

BY

H. F. KREIMER

ABSTRACT. Let B be a commutative ring with 1, let G be a finite group of automorphisms of B, and let A be the subring of G-invariant elements of B. For any separable A-subalgebra A' of B, the following assertions are proved: (1) A' is a finitely generated, projective A-module; (2) for each prime ideal p of A, the rank of A'_p over A_p does not exceed the order of G; (3) there is a finite group H of automorphisms of B such that A' is the subring of H-invariant elements of B. If, in addition, A' is G-stable, then every automorphism of A' over A is the restriction of an automorphism of B, and $\text{Hom}_A(A', A')$ is generated as a left A'-module by those automorphisms of A' which are the restrictions of elements of G.

Let E be any G-stable subalgebra of the Boolean algebra of all idempotent elements of B. The closure of G with respect to E is the set of all automorphisms ρ of B for which there exist a positive integer n and $e_i \in E$, $\sigma_i \in G$, such that $e_i \cdot \rho = e_i \cdot \sigma_i$ for $1 \leq i \leq n$ and $\bigcup_{i=1}^{n} e_i = 1$ in the Boolean algebra E.

PROPOSITION 1. Let E be a G-stable subalgebra of the Boolean algebra of all idempotent elements of B, and let \bar{G} be the closure of G with respect to E.

(i) \bar{G} is a group of automorphisms of B over A, which contains G.
(ii) \bar{G} is the set of all automorphisms ρ of B for which there exist a positive integer n, a G-stable set $\{e_1, \ldots, e_n\}$ of n pairwise orthogonal elements of E, and $\sigma_i \in G$ for $1 \leq i \leq n$, such that $\rho = \sum_{i=1}^{n} e_i \cdot \sigma_i$.

PROOF. Clearly $G \subseteq \bar{G}$. Let ρ be an element of \bar{G}; let n be a positive integer; and, for $1 \leq i \leq n$, let e_i be an element of E and σ_i be an element of G, such that $e_i \cdot \rho = e_i \cdot \sigma_i$ and $\bigcup_{i=1}^{n} e_i = 1$. If $a \in A$, then $e_i \cdot \rho(a) = e_i \cdot \sigma_i(a) = e_i \cdot a$ for $1 \leq i \leq n$; and, since $\bigcup_{i=1}^{n} e_i = 1$, it follows readily that ρ must be an automorphism of B over A. Also, for $1 \leq i \leq n$,

Received by the editors August 7, 1973.

Key words and phrases. Automorphism, commutative ring, Galois extension.

(1) The author gratefully acknowledges support in his research from the National Science Foundation under grant GP-19406.
\[
\rho^{-1}(e_i) = \rho^{-1}(e_i \cdot \sigma_i^{-1}(e_i)) = \rho^{-1}(e_i \cdot \rho \sigma_i^{-1}(e_i)) = \rho^{-1}(e_i) \cdot \sigma_i^{-1}(e_i)
\]

and \(\bigcup_{i=1}^n \sigma_i^{-1}(e_i) = \rho^{-1}((\bigcup_{i=1}^n e_i) = 1\). From the equation \(e_i \cdot \rho = e_i \cdot \sigma_i\), it follows that \(\sigma_i^{-1}(e_i) \cdot \sigma_i^{-1} \rho = \sigma_i^{-1}(e_i) \cdot 1\), and \(\sigma_i^{-1}(e_i) \cdot \sigma_i^{-1} = \sigma_i^{-1}(e_i) \cdot \rho^{-1}\) for \(1 \leq i \leq n\). Therefore \(\rho^{-1} \in \bar{G}\). Now let \(\rho'\) be an element of \(\bar{G}\); let \(n'\) be a positive integer; and, for \(1 \leq j \leq n'\), let \(e'_j\) be an element of \(E\) and \(\sigma'_j\) be an element of \(G\), such that \(e'_j \cdot \rho' = e'_j \cdot \sigma'_j\) and \(\bigcup_{j=1}^{n'} e'_j = 1\). Then

\[
e_i \cdot \sigma_i(e'_j) \cdot \rho = e_i \cdot \sigma_i(e'_j) \cdot \sigma_j \cdot \rho' = e_i \cdot \sigma_i(e'_j) \cdot \sigma_j
\]

for \(1 \leq i \leq n\) and \(1 \leq j \leq n'\) and

\[
\bigcup_{i=1}^n \bigcup_{j=1}^{n'} e_i \cdot \sigma_i(e'_j) = \bigcup_{i=1}^n \left(e_i \cap \sigma_i \left(\bigcup_{j=1}^{n'} e_j \right) \right) = \bigcup_{i=1}^n e_i = 1.
\]

Therefore \(\rho \rho' \in \bar{G}\), and it has now been established that \(\bar{G}\) is a group of automorphisms of \(B\) over \(A\). \(\{\sigma(e_i) | \sigma \in G \text{ and } 1 \leq i \leq n\}\) is a finite subset of \(E\), and it generates a finite, \(G\)-stable subalgebra of \(E\). Letting \(f_1, \cdots, f_m\) be the distinct minimal elements of this subalgebra, \(\{f_1, \cdots, f_m\}\) is a \(G\)-stable set of pairwise orthogonal elements of \(E\) such that \(\sum_{j=1}^m f_j = 1\). Let \(j\) be any integer such that \(1 \leq j \leq m\). Since \(\bigcup_{i=1}^n e_i = 1\), there exists an integer \(i\), \(1 \leq i \leq n\), such that \(f_j = f_j \cap e_i = f_j \cdot e_i\), and \(f_j \cdot \rho = f_j \cdot e_i \cdot \sigma_i = f_j \cdot \sigma_i\). Hence, for \(1 \leq j \leq n\), there exists \(\tau_j \in G\) such that \(f_j \cdot \rho = f_j \cdot \tau_j\); and \(\rho = \sum_{j=1}^m f_j \cdot \rho = \sum_{j=1}^m f_j \cdot \tau_j\). Conversely, if \(\rho\) is an automorphism of \(B\) for which there exist pairwise orthogonal elements \(e_1, \cdots, e_n\) of \(E\) and elements \(\sigma_1, \cdots, \sigma_n\) of \(G\) such that \(\rho = \sum_{i=1}^n e_i \cdot \sigma_i\), then \(e_i \rho = e_i \cdot \sigma_i\) for \(1 \leq i \leq n\), \(\bigcup_{i=1}^n e_i = \sum_{i=1}^n e_i = \rho(1) = 1\), and therefore \(\rho \in \bar{G}\).

Notice that the closure of \(G\) as defined in [10, Definition 3.7], is just the closure of \(G\) with respect to the Boolean algebra of all idempotent elements of \(B\); and statement (ii) of Proposition 1 is a slight strengthening of Lemma 1.1 of [8]. Also, whenever \(e_1, \cdots, e_n\) are pairwise orthogonal idempotent elements of \(B\) such that \(\sum_{i=1}^n e_i = 1\), and \(\sigma_i \in G\) for \(1 \leq i \leq n\); then it is easily verified that the mapping \(\eta = \sum_{i=1}^n e_i \cdot \sigma_i\) is a homomorphism of \(B\) into \(B\).

Proposition 2. Let \(n\) be a positive integer, let \(E = \{e_1, \cdots, e_n\}\) be a \(G\)-stable set of \(n\) pairwise orthogonal idempotent elements of \(B\) such that \(\sum_{i=1}^n e_i = 1\), and let \(\sigma_i \in G\) for \(1 \leq i \leq n\). \(\eta = \sum_{i=1}^n e_i \cdot \sigma_i\) is an automorphism of \(B\) if, and only if, the mapping \(\pi\) of \(E\) into \(E\), defined by the rule \(\pi(e_i) = \sigma_i^{-1}(e_i)\) for \(1 \leq i \leq n\), is a permutation of \(E\). Moreover, if \(\eta\) is an
autormorphisms of B, then \(\eta^{-1} = \Sigma_{i=1}^{n} \pi(e_i) \cdot \sigma_i^{-1} \).

Proof. Observe that \(E \) generates a finite, \(G \)-stable Boolean algebra of idempotent elements of \(B \), and \(\eta \) induces a homomorphism of this algebra into itself. Now suppose that \(\eta \) is an automorphism of \(B \). Then \(\eta \) and \(\eta^{-1} \) induce automorphisms of the finite Boolean algebra generated by \(E \); and, therefore, \(\eta \) and \(\eta^{-1} \) must induce permutations of \(E \). From the equation \(e_i = \eta \eta^{-1}(e_i) = \Sigma_{j=1}^{n} e_j \cdot \eta \eta^{-1}(e_i) \), it follows that \(e_i = \sigma_i \eta^{-1}(e_i) \) for \(1 \leq i \leq n \). Therefore \(\sigma_i^{-1}(e_i) = \eta^{-1}(e_i) \) for \(1 \leq i \leq n \), and \(\pi \) is the permutation of \(E \) induced by \(\eta^{-1} \). Conversely, suppose that \(\pi \) is a permutation of \(E \); and let \(\theta = \Sigma_{i=1}^{n} \pi(e_i) \cdot \sigma_i^{-1} \). Then

\[
\theta \eta = \sum_{i,j=1}^{n} \pi(e_i) \cdot \sigma_i^{-1}(e_j) \cdot \sigma_i^{-1} \sigma_j
\]

\[
= \sum_{i,j=1}^{n} \sigma_i^{-1}(e_i \cdot e_j) \cdot \sigma_i^{-1} \sigma_j = \sum_{i=1}^{n} \pi(e_i) \cdot 1 = 1,
\]

while

\[
\eta \theta = \sum_{i,j=1}^{n} e_i \cdot \sigma_i \pi(e_j) \cdot \sigma_i \sigma_j^{-1} = \sum_{i,j=1}^{n} \sigma_i \pi(e_i) \cdot \pi(e_j) \cdot \sigma_i \sigma_j^{-1}
\]

\[
= \sum_{i=1}^{n} \sigma_i \pi(e_i)) \cdot \sigma_i \sigma_i^{-1} = \sum_{i=1}^{n} e_i \cdot 1 = 1.
\]

Therefore \(\eta \) is an automorphism of \(B \) and \(\theta = \eta^{-1} \).

Corollary. Let \(B_1 \) and \(B_2 \) be commutative rings; let \(H \) be a finite group, which is represented as a group of automorphisms of \(B_i \) by a homomorphism \(\phi_i \) of \(H \) into the group of all automorphisms of \(B_i \) for \(i = 1, 2 \); and let \(\omega \) be a homomorphism of \(B_1 \) into \(B_2 \), such that \(\omega(\phi_1(a)(b)) = \phi_2(a)(\omega(b)) \) for \(a \in H \) and \(b \in B_1 \). Suppose that \(n \) is a positive integer; \(E = \{e_1, \ldots, e_n\} \) is a \(\phi_1(H) \)-stable set of \(n \) pairwise orthogonal idempotent elements of \(B_1 \), such that \(\Sigma_{i=1}^{n} e_i = 1 \); and \(\sigma_i \in H \) for \(1 \leq i \leq n \).

(i) If \(\Sigma_{i=1}^{n} \pi(e_i) \cdot \phi_1(\sigma_i) \) is an automorphism of \(B_1 \), then \(\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \) is an automorphism of \(B_2 \).

(ii) If \(\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \) is an automorphism of \(B_2 \) and with at most one exception \(\omega(e_i) \neq 0 \) for \(1 \leq i \leq n \), then \(\Sigma_{i=1}^{n} \pi(e_i) \cdot \phi_1(\sigma_i) \) is an automorphism of \(B_1 \).

Proof. \(\omega(E) \) is a finite set of idempotent elements of \(B_2 \) and \(\Sigma_{i=1}^{n} \omega(e_i) = \omega(\Sigma_{i=1}^{n} e_i) = \omega(1) = 1 \). Clearly the zero terms of \(\Sigma_{i=1}^{n} \omega(e_i) \) and
\[\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \] may be disregarded and it is only necessary to consider the subset \(E_2 \) of nonzero elements of \(\omega(E) \). Since \(E \) is \(\phi_1(H) \)-stable and \(\phi_2(\sigma)(\omega(e)) = \omega(\phi_1(\sigma)(e)) \) for \(\sigma \in H \) and \(e \in E \), \(\omega(E) \) and \(E_2 \) must be \(\phi_2(H) \)-stable sets. Therefore, a mapping \(\pi_2 \) of \(E_2 \) into \(E_2 \) is obtained by restricting the correspondence \(\omega(e_i) \rightarrow \phi_2(\sigma_i^{-1})(\omega(e_i)) \), \(1 \leq i \leq n \), to the elements of \(E_2 \). \(\omega(e_i) \cdot \omega(e_j) = \omega(e_ie_j) = \omega(0) = 0 \) for \(i \neq j \) and \(1 \leq i, j \leq n \). In particular, if \(\omega(e_i) = \omega(e_j) \) for integers \(i \) and \(j \) such that \(1 \leq i, j \leq n \) and \(i \neq j \), then \(\omega(e_i) = \omega(e_j) = \omega(e_i) \cdot \omega(e_j) = 0 \). Therefore, the elements of \(E_2 \) are pairwise orthogonal; and it is easily deduced from Proposition 2 that \(\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \) is an automorphism of \(B_2 \) if, and only if, \(\pi_2 \) is a permutation of \(E_2 \).

Now let \(E_1 = \{ e \in E \mid \omega(e) \neq 0 \} \). Since \(\phi_2(\sigma)(\omega(e)) = \omega(\phi_1(\sigma)(e)) \) for \(\sigma \in H \) and \(e \in E \), \(E_1 \) and the complement of \(E_1 \) in \(E \) are \(\phi_1(H) \)-stable subsets of \(E \). Letting \(\pi \) denote the mapping of \(E \) into \(E \) defined by the rule \(\pi(e_i) = \phi_1(\sigma_i^{-1})(e_i) \) for \(1 \leq i \leq n \); a mapping \(\pi_1 \) of \(E_1 \) onto \(E_1 \) is obtained by restricting \(\pi \) to \(E_1 \). The restriction of \(\omega \) to \(E_1 \) is a bijection of \(E_1 \) onto \(E_2 \). Since \(\omega(\phi_1(\sigma_i^{-1})(e_i)) = \phi_2(\sigma_i^{-1})(\omega(e_i)) \) for \(1 \leq i \leq n \), \(\omega \pi_1(e) = \pi_2 \omega(e) \) for \(e \in E_1 \). Consequently, \(\pi_2 \) is a permutation of \(E_2 \) if and only if \(\pi_1 \) is a permutation of \(E_1 \). Furthermore, \(\pi \) is a permutation of \(E \) if and only if \(\Sigma_{i=1}^{n} e_i \cdot \phi_1(\sigma_i) \) is an automorphism of \(B_1 \) by Proposition 2. But if \(\pi \) is a permutation of \(E \), then \(\pi_1 \) will be a permutation of \(E_1 \). Thus, if \(\Sigma_{i=1}^{n} e_i \cdot \phi_1(\sigma_i) \) is an automorphism of \(B_1 \), then \(\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \) is an automorphism of \(B_2 \). To prove statement (ii) of the Corollary, assume that, with at most one exception, \(\omega(e_i) \neq 0 \) for \(1 \leq i \leq n \). Then \(E_1 \) contains every element of \(E \) except possibly one; so, if \(\pi_1 \) is a permutation of \(E_1 \), then \(\pi \) must be a permutation of \(E \). In this case, if \(\Sigma_{i=1}^{n} \omega(e_i) \cdot \phi_2(\sigma_i) \) is an automorphism of \(B_2 \), then \(\Sigma_{i=1}^{n} e_i \cdot \phi_1(\sigma_i) \) is an automorphism of \(B_1 \).

In agreement with [5, Definition 1.4], call \(B \) a Galois extension of \(A \) with Galois group \(G \) if there exist a positive integer \(n \) and elements \(x_1, y_1 \) of \(B \), \(1 \leq i \leq n \), such that \(\Sigma_{i=1}^{n} x_i \sigma(y_i) = \delta_{1,\sigma} \) for all \(\sigma \) in \(G \).

Proposition 3. Let \(B' \) be a separable \(A \)-subalgebra of \(B \), which is stable under \(G \); and let \(\overline{G} \) be the closure of \(G \) with respect to the Boolean algebra of all idempotent elements of \(B' \). Then:

(i) There exists a finite set \(F \) of pairwise orthogonal idempotent elements of \(A \), such that \(\Sigma_{e \in F} e = 1 \); and, for each \(e \in F \), there exists a subgroup \(G(e) \) of \(\overline{G} \) such that \((G(e) : 1) < (G : 1) \) and \(B'e \) is a Galois extension of \(Ae \) with respect to the group of automorphisms of \(B'e \) induced by elements of \(G(e) \).
(ii) \(\text{Hom}_A(B', B') \) is generated as a left \(B' \)-module by those automorphisms of \(B' \) which are the restrictions of elements of \(G \).

(iii) Every automorphism of \(B' \) over \(A \) is the restriction to \(B' \) of an element of \(G \).

Proof. Let \(x_1, \ldots, x_n, y_1, \ldots, y_n \) be elements of \(B' \) such that
\[
\sum_{i=1}^{n} x_i y_i = 1 \quad \text{and} \quad \sum_{i=1}^{n} x_i \otimes y_i = \sum_{i=1}^{n} x_i \otimes y_i b \quad \text{in} \quad B' \otimes_A B' \quad \text{for all} \quad b \in B'.
\]
Setting \(e_\sigma = \sum_{i=1}^{n} x_i \cdot \sigma(y_i), \ e_\sigma \in B' \) for \(\sigma \in G \). Moreover, \(\sum_{i=1}^{n} x_i \otimes \sigma(y_i) = \sum_{i=1}^{n} x_i \otimes \sigma(y_i b) \) in \(B \otimes_A B \), and so \(b \cdot e_\sigma = e_\sigma \cdot \sigma(b) \) for \(b \in B' \) and \(\sigma \in G \). Therefore,
\[
e_\sigma^2 = \sum_{i=1}^{n} e_\sigma \cdot x_i \cdot \sigma(y_i) = \sum_{i=1}^{n} x_i \cdot e_\sigma \cdot \sigma(y_i) = \sum_{i=1}^{n} x_i \cdot y_i \cdot e_\sigma = e_\sigma,
\]
for \(\sigma \in G; \) and \(\{\sigma(\epsilon)\sigma, \sigma \in G\} \) is a finite, \(G \)-stable set of idempotent elements of \(B' \). Clearly the set \(\{\sigma(\epsilon)\sigma, \sigma \in G\} \) generates a finite, \(G \)-stable subalgebra of the Boolean algebra of all idempotent elements of \(B' \); let \(E \) be the set of minimal elements of this finite subalgebra. Then \(E \) is a finite, \(G \)-stable set of pairwise orthogonal idempotent elements of \(B' \) such that \(\sum_{e \in E} e = 1 \).

A groupoid \(g \) of ring isomorphisms between elements of the set \(\{Be \mid e \in E\} \) is obtained by letting \(g(Be, Be') \) be the set of isomorphisms of \(Be \) onto \(Be' \) which are restrictions of elements of \(G \) for \(e, e' \in E \). Since \(A \) is the subring of \(G \)-invariant elements of \(B \), \(A = \{b \in B | \sigma(be) = be' \text{ for } \sigma \in g(Be, Be')\} \).

In Lemma 2.2 of \cite{6}, there is given a construction of a finite set \(F \) of pairwise orthogonal idempotent elements of \(A \), such that \(\sum_{e \in F} e = 1 \); and, for each \(e \in F \), a group \(G(e) \) of automorphisms of \(Be \) for which \(Ae \) is the subring of invariant elements. Each element of \(G(e) \) is induced by an automorphism of \(B \) which acts as the identity map on \(B(1 - e) \), and thus \(G(e) \) may be identified with a group of automorphisms of \(B \). Although it is not explicitly stated there, it is obvious from the proof of \cite[Lemma 2.2]{6} that \(G(e) \) is a subgroup of \(\tilde{G} \) and \((G(e) : 1) \leq (G : 1) \). For each \(e \in F \), let \(H(e) \) be the group of automorphisms of \(B'e \) induced by elements of \(G(e) \). By careful analogy with the construction of the groups \(G(e) \), the groups \(H(e) \) may be constructed from the groupoid \(h \) of ring isomorphisms between elements of the set \(\{B'e \mid e \in E\} \), obtained by letting \(h(B'e, B'e') \) be the set of isomorphisms of \(B'e \) onto \(B'e' \) which are restrictions of elements of \(G \) for \(e, e' \in E \), so as to satisfy Lemma 2.2 of \cite{6}. For \(e \in E \) and \(\sigma \in G \), \(\sum_{i=1}^{n} x_i \cdot \sigma(y_i) = e \cdot e_\sigma \) and either \(e \cdot e_\sigma = 0 \) or \(e \cdot e_\sigma = e \). But if \(e \cdot e_\sigma = e \), then \(e \cdot \sigma(b) = e \cdot e_\sigma \cdot \sigma(b) = e \cdot b \cdot e_\sigma = e \cdot b \) for \(b \in B' \). Therefore \(\sum_{i=1}^{n} (x_i e) \cdot \sigma(y_i e) = \delta_{1,0} \cdot e \) for all \(\rho \in h(B'e, B'e) \) and \(e \in E \), and it follows from \cite[Proposition 1.7 and Lemma
2.2] that \(B'e \) is a Galois extension of \(Ae \) with Galois group \(H(e) \) for every \(e \in F \).

\[\text{Hom}_A(B', B') = \sum_{e \in F} e \cdot \text{Hom}_A(B', B') \text{; and, for each } e \in F, \text{ there is a} \]
\[\text{natural isomorphism of } e \cdot \text{Hom}_A(B', B') \text{ onto } \text{Hom}_{Ae}(B'e, B'e). \]
Since \(B'e \) is a Galois extension of \(Ae \) with respect to a group of automorphisms of \(B'e \) which are induced by elements of a subgroup \(G(e) \) of \(\bar{G} \), \(\text{Hom}_{Ae}(B'e, B'e) \) is generated as a left \(B'e \)-module by these induced automorphisms for \(e \in F \). It follows easily from part (ii) of Proposition 1 that \(\text{Hom}_A(B', B') \) is generated as a left \(B' \)-module by those automorphisms of \(B' \) which are the restrictions of elements of \(G \). Finally, let \(\psi \) be an automorphism of \(B' \) over \(A \). \(\psi = \sum_{e \in F} e \cdot \psi \), and \(e \cdot \psi \) induces an automorphism of \(B'e \) over \(Ae \) for each \(e \in F \). But for each \(e \in F \), there exist pairwise orthogonal idempotent elements \(f_1, \ldots, f_h \) of \(B'e \) and elements \(\tau_1, \ldots, \tau_l \) of \(G(e) \), such that \(e \cdot \psi \) and \(\Sigma_{i=1}^h f_i \cdot \tau_i \) induce the same automorphism on \(B'e \) by [5, Corollary 3.3]. From the construction given for the group \(G(e) \), \(e \in F \), it is easily deduced that \(\psi \) lies in the closure, with respect to the Boolean algebra of all idempotent elements of \(B' \), of the group of automorphisms of \(B' \) which are the restrictions of elements of \(G \). This fact is also a consequence of Lemma 3.14 of [10]. Therefore, there exist a \(G \)-stable set \(\{ f_1, \ldots, f_h \} \) of \(h \) pairwise orthogonal idempotent elements of \(B' \) and \(\sigma_i \in G \) for \(1 \leq i \leq h \), such that \(\psi \) is the restriction of \(\Sigma_{i=1}^h f_i \cdot \sigma_i \) to \(B' \) by part (ii) of Proposition 1. \(\Sigma_{i=1}^h f_i = \psi(1) = 1 \); and taking \(B_1 = B' \) and \(B_2 = B \), and letting \(\omega \) be the inclusion map of \(B' \) into \(B \), the Corollary to Proposition 2 may be applied to conclude that \(\Sigma_{i=1}^h f_i \cdot \sigma_i \) is an automorphism of \(B' \). Clearly \(\Sigma_{i=1}^h f_i \cdot \sigma_i \) is an element of \(\bar{G} \).

Let \(X \) be a finitely generated, projective module over a commutative ring \(A \), let \(p \) be a prime ideal of \(A \), and recall that \(X_p \) is a free \(A_p \)-module of finite rank [3, Chapter 2, §5, Theorem 1]. The rank of the free \(A_p \)-module \(X_p \) is called the rank of \(X \) at \(p \) and it will be denoted simply by \(\text{rank}(X_p) \).

Lemma 1. Let \(B' \) be any commutative \(A \)-algebra which is a finitely generated, projective \(A \)-module. If \(A' \) is a separable \(A \)-subalgebra of \(B' \), then:

(i) \(B' \) is a finitely generated, projective \(A' \)-module.

(ii) \(A' \) is an \(A' \)-module direct summand of \(B' \).

(iii) \(A' \) and \(B'/A' \) are finitely generated, projective \(A \)-modules.

(iv) \(\text{rank}(A'_p) + \text{rank}((B'/A')_p) = \text{rank}(B'_p) \) for every prime ideal \(p \) of \(A \).

Proof. Let \(A' \) be a separable \(A \)-subalgebra of \(B' \). Since \(B' \) is a finitely generated \(A \)-module, certainly \(B' \) is a finitely generated \(A' \)-module. Statement (i) is a consequence of the well-known fact that any \(A' \)-module which is projective as an \(A \)-module is also projective as an \(A' \)-module. Indeed, \(A' \) is
a module of projective dimension zero over $A' \otimes_A A'$ by [4, Chapter IX, Proposition 7.7]; and, for any A'-module X which is projective as an A-module, it follows from [4, Chapter IX, Proposition 2.3] that $A' \otimes_A X$ is a projective $A' \otimes_A A'$-module. But $A' \otimes_A X$ is naturally isomorphic to X, and $A' \otimes_A A'$ is naturally isomorphic to A'. B' is a finitely generated, projective left \text{Hom}_{A'}(B', B')$-module by [1, Proposition A.3]; and A' is an A'-module direct summand of B' according to [9, Proposition 1]. In particular, A' is an A-module direct summand of B'; and, therefore, A' and B'/A' are finitely generated, projective A-modules. Moreover, for any prime ideal p of A, B'_p is isomorphic as an A'_p-module to the direct sum of A'_p and $(B'/A')_p$; and, therefore, \(\text{rank}(B'_p) = \text{rank}(A'_p) + \text{rank}((B'/A')_p) \).

If B' is a G-stable subring of B, then G is canonically represented as a group of automorphisms of B' by restricting each element of G to B'. Moreover, if K is the kernel of this representation, then G/K may be identified with a group of automorphisms of B' by this representation, and this identification will be made whenever it is convenient.

Lemma 2. Let B' be an A-subalgebra of B which is stable under G, let K be the kernel of the canonical representation of G as a group of automorphisms of B', and let \overline{G} be the closure of G with respect to the Boolean algebra of all idempotent elements of B'. Assume that B' is a Galois extension of A with Galois group G/K, and let A' be a separable A-subalgebra of B'. Then:

(i) A' is a finitely generated, projective A-module;

(ii) $\text{rank}(A'_p) \leq (G : K)$ for every prime ideal p of A;

(iii) there exists a finite subgroup H of \overline{G} such that A' is the subring of H-invariant elements of B.

Proof. Let p be a prime ideal of A. Since B' is a Galois extension of A with Galois group G/K, B' is a finitely generated, projective A-module. By Lemma 1, A' is a finitely generated, projective A-module and $\text{rank}(A'_p) \leq \text{rank}(B'_p)$. But $\text{rank}(B'_p)$ equals the order of G/K by [5, Lemma 4.1]; and therefore $\text{rank}(A'_p) \leq (G : K)$. Also there exist a positive integer n and elements x_i, y_i of B', $1 \leq i \leq n$, such that $\sum_{i=1}^n x_i \cdot \phi(y_i) = \delta_{1,\phi}$ for all $\phi \in G/K$. Since K is a normal subgroup of G, B^K is a G-stable subring of B. Clearly $B' \subseteq B^K$ and K is the kernel of the canonical representation of G as a group of automorphisms of B^K. Thus G/K is faithfully represented as a group of automorphisms of B^K, and B^K must be a Galois extension of A with Galois group G/K. But then the inclusion map of B' into B^K is an isomorphism by [5, Theorem 3.4]; and therefore $B' = B^K$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
B' is a separable A-algebra by [5, Theorem 1.3], and there exists a finite group \bar{H} of automorphisms of B' such that $A' = (B')^{\bar{H}}$ by [7, Lemma 1.5]. Each element ψ of \bar{H} is uniquely expressible as $\psi = \sum_{\phi \in G/K} e_{\psi, \phi} \cdot \phi$, where $\{e_{\psi, \phi} | \phi \in G/K\}$ is a set of pairwise orthogonal idempotent elements of B', according to [5, Corollary 3.3]. The set $\{e_{\psi, \phi} | \phi \in G, \psi \in \bar{H}, \text{ and } \phi \in G/K\}$ is finite, and it generates a finite, G-stable subalgebra of the Boolean algebra of all idempotent elements of B'. Letting e_1, \ldots, e_m be the minimal elements of this finite subalgebra, $\{e_1, \ldots, e_m\}$ is a G-stable set of pairwise orthogonal idempotent elements of B' such that $\sum_{i=1}^{m} e_i = 1$. It is easily verified that $S = \{\sum_{i=1}^{m} e_i \cdot \sigma_i | \sigma_i \in G \text{ for } 1 \leq i \leq m\}$ is a finite semigroup of homomorphisms of B into B, and every element of \bar{H} is the restriction to B' of an element of S. Let H be the subsemigroup of those elements of S, the restrictions of which are elements of \bar{H}. The Corollary to Proposition 2 may be applied to the rings B' and B to show that every element of H is an automorphism of B'; and Proposition 2 may be used to show that, whenever $\eta \in H$, $\eta^{-1} \in H$. Thus, it is apparent that H is a finite subgroup of \bar{G}, $K \subseteq H$, and $\bar{H} = H/K$. Therefore $A' = (B')^{\bar{H}} = (B)^{\bar{H}} = B^H$.

Theorem. Let A' be a separable A-subalgebra of B, let $B' = \Pi_{\sigma \in G} \sigma(A')$, and let \bar{G} be the closure of G with respect to the Boolean algebra of all idempotent elements of B'.

(i) A' is a finitely generated, projective A-module.

(ii) $\text{rank}(A'_p) \leq (G : 1)$ for every prime ideal p of A.

(iii) There exists a finite subgroup H of \bar{G} such that A' is the subring of H-invariant elements of B.

Proof. Since A' is a separable A-subalgebra of B, $\sigma(A')$ is a separable A-subalgebra of B for $\sigma \in G$; and B' is a homomorphic image of the tensor product of the $\sigma(A')$, so B' is a G-stable subalgebra of B which is separable by [2, Proposition 1.4 and Proposition 1.5]. By Proposition 3, there exists a finite set F of pairwise orthogonal idempotent elements of A, such that $\sum_{e \in F} e = 1$; and, for each $e \in F$, there exists a subgroup $G(e)$ of \bar{G} such that $(G(e) : 1) \leq (G : 1)$ and $B'e$ is a Galois extension of Ae with respect to the group of automorphisms of $B'e$ induced by elements of $G(e)$. Since $A'e$ is a homomorphic image of A', $A'e$ is a separable Ae-subalgebra of Be for $e \in G$ [2, Proposition 1.4]. Let $\bar{G}(e)$ be the closure, with respect to the Boolean algebra of all idempotent elements of $B'e$, of the group of automorphisms of $B'e$ induced by elements of $G(e)$. It follows from Lemma 2 that, for each $e \in F$, $A'e$ is a finitely generated, projective Ae-module; $\text{rank}((A'e)_q) \leq (G : 1)$ for every prime ideal q of Ae; and there exists a finite subgroup $H(e)$ of $\bar{G}(e)$ such
that $A'e$ is the subring of $H(e)$-invariant elements of Be. Since $A = \Sigma_{e \in F} Ae$, $A' = \Sigma_{e \in F} A'e$, and $A'e$ is a finitely generated, projective Ae-module for each $e \in F$, A' must be a finitely generated, projective A-module. Let p be a prime ideal of A, and let e be an element of F such that $e \not\in p$. $A'e$ is naturally isomorphic to the ring of fractions $e^{-1} \cdot A'$, Ae is naturally isomorphic to the ring of fractions $e^{-1} \cdot A$, pe is a prime ideal of Ae, and the complement of p in A is mapped onto the complement of pe in Ae by the canonical homomorphism of A onto Ae. Therefore, A_p is isomorphic to $(Ae)_{pe}$, and A'_p and $(A'e)_{pe}$ are isomorphic A_p-modules by [3, Chapter II, §2, Proposition 7]. Consequently, $\text{rank}(A'_p) = \text{rank}((A'e)_{pe}) \leq (G : 1)$. Finally, let H be the direct product of the groups $H(e)$, $e \in F$. H is a finite group, and the decomposition $B = \Sigma_{e \in F} Be$ may be used to define an isomorphism by which H may be identified with a group of automorphisms of B. Since $G(e)$ is a subgroup of \overline{G}, it follows readily that $H(e)$ is a subgroup of the closure, with respect to the Boolean algebra of all idempotent elements of $B'e$, of the group of automorphisms of Be induced by elements of G. Therefore, H is a subgroup of \overline{G}, and $A' = \Sigma_{e \in F} (Be)^{H(e)} = B^H$.

REFERENCES

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306