Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Obstruction theory with coefficients in a spectrum


Authors: Mark Mahowald and Robert Rigdon
Journal: Trans. Amer. Math. Soc. 204 (1975), 365-384
MSC: Primary 55G35; Secondary 55G40
DOI: https://doi.org/10.1090/S0002-9947-1975-0488058-5
MathSciNet review: 0488058
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper an obstruction theory with coefficients in a spectrum is developed. An idea of orientability of a fiber bundle with respect to a spectrum is introduced and for bundles orientable with respect to the spectrum a resolution is produced which corresponds to a modified Postnikov tower in the classical case.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, University of Chicago, 1971.
  • [2] D. W. Anderson, Resolutions of fibrations, Bol. Soc. Mat. Mexicana (2) 16 (1971), 26-28. MR 0348742 (50:1237)
  • [3] J. C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447-475. MR 38 #5217. MR 0236924 (38:5217)
  • [4] -, Extensions of cohomology theories, Illinois J. Math. 14 (1970), 551-584. MR 42 #8476. MR 0273598 (42:8476)
  • [5] A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79-106. MR 44 #1031. MR 0283801 (44:1031)
  • [6] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255. MR 27 #5264. MR 0155330 (27:5264)
  • [7] S. Gitler and M. Mahowald, The geometric dimension of stable real vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85-107. MR 37 #6922. MR 0231367 (37:6922)
  • [8] I. M. Hall, The generalized Whitney sum, Quart. J. Math. Oxford Ser. (2) 16 (1965), 360-384. MR 32 #4698. MR 0187245 (32:4698)
  • [9] L. L. Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972), 755-769. MR 0353315 (50:5799)
  • [10] M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Soc. 110 (1964), 315-349. MR 28 #620. MR 0157386 (28:620)
  • [11] W. S. Massey and F. P. Peterson, The cohomology structure of certain fiber spaces. I, Topology 4 (1964), 47-65. MR 32 #6459. MR 0189032 (32:6459)
  • [12] J. F. McClendon, A spectral sequence for classifying liftings in fiber spaces, Bull. Amer. Math. Soc. 74 (1968), 982-984. MR 0234464 (38:2781)
  • [13] J. F. McClendon, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183-214. MR 40 #3541. MR 0250302 (40:3541)
  • [14] -, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17. MR 45 #6002. MR 0296943 (45:6002)
  • [15] J.-P. Meyer, Relative stable cohomotopy, Conference on Algebraic Topology, University of Illinois at Chicago Circle, 1968, pp. 206-212.
  • [16] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, New York and London, 1968. MR 37 #2223. MR 0226634 (37:2223)
  • [17] J. Siegel, $ k$-invariants in local coefficient theory, Proc. Amer. Math. Soc. 29 (1971), 169-174. MR 46 #6344. MR 0307224 (46:6344)
  • [18] J. D. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246. MR 27 #4235. MR 0154286 (27:4235)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55G35, 55G40

Retrieve articles in all journals with MSC: 55G35, 55G40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0488058-5
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society