Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some theorems on $ ({\rm CA})$ analytic groups


Author: David Zerling
Journal: Trans. Amer. Math. Soc. 205 (1975), 181-192
MSC: Primary 22E15
DOI: https://doi.org/10.1090/S0002-9947-1975-0364548-0
MathSciNet review: 0364548
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analytic group $ G$ is called $ (CA)$ if the group of inner automorphisms of $ G$ is closed in the Lie group of all (bicontinuous) automorphisms of $ G$. We show that each non-$ (CA)$ analytic group $ G$ can be written as a semidirect product of a $ (CA)$ analytic group and a vector group. This decomposition yields a natural dense immersion of $ G$ into a $ (CA)$ analytic group $ H$, such that each automorphism of $ G$ can be extended to an automorphism of $ H$. This immersion and extension property enables us to derive a sufficient condition for the normal part of a semidirect product decomposition of a $ (CA)$ analytic group to be $ (CA)$.


References [Enhancements On Off] (What's this?)

  • [1] C. Chevalley, Theory of Lie groups. I, Princeton Math. Series, vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412. MR 0082628 (18:583c)
  • [2] M. Goto, Semigroup of endomorphisms of a locally compact group, Trans. Amer. Math. Soc. 87 (1958), 359-371. MR 20 #3229. MR 0096746 (20:3229)
  • [3] -, Analytic subgroups of $ GL(n,$R$ )$, Tôhoku Math. J. (2) 25 (1973), 197-199. MR 0322099 (48:463)
  • [4] -, Absolutely closed Lie groups, Math. Ann. 204 (1973), 337-341. MR 0372118 (51:8335)
  • [5] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965. MR 34 #7696. MR 0207883 (34:7696)
  • [6] -, The automorphism group of a Lie group, Trans. Amer. Math. Soc. 72 (1952), 209-216. MR 13, 624. MR 0045735 (13:624e)
  • [7] D. H. Lee and T. S. Wu, On CA topological groups, Duke Math. J. 37 (1970), 515-521. MR 42 #417. MR 0265508 (42:417)
  • [8] W. T. van Est, Dense imbeddings of Lie groups, Nederl. Akad. Wettensch. Proc. Ser. A 54 = Indag. Math. 13 (1951), 321-328. MR 13, 432. MR 0044530 (13:432c)
  • [9] -, Dense imbeddings of Lie groups. II, Nederl. Akad. Wettensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 255-274. MR 14, 135.
  • [10] -, Some theorems on (CA) Lie algebras. I, II, Nederl. Akad. Wettensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 546-568. MR 14, 720. MR 0053091 (14:720c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15

Retrieve articles in all journals with MSC: 22E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0364548-0
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society