Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Three local conditions on a graded ring


Author: Jacob Matijevic
Journal: Trans. Amer. Math. Soc. 205 (1975), 275-284
MSC: Primary 13C15; Secondary 13H10
DOI: https://doi.org/10.1090/S0002-9947-1975-0384776-8
MathSciNet review: 0384776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R = {\Sigma _{i \in Z}}{R_i}$ be a commutative graded Noetherian ring with unit and let $ A = {\Sigma _{i \in Z}}{A_i}$ be a finitely generated graded $ R$ module. We show that if we assume that $ {A_M}$ is a Cohen Macaulay $ {R_M}$ module for each maximal graded ideal $ M$ of $ R$, then $ {A_P}$ is a Cohen Macaulay $ {R_P}$ module for each prime ideal $ P$ of $ R$. With $ A = R$ we show that the same is true with Cohen Macaulay replaced by regular and Gorenstein, respectively.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27 #3669. MR 0153708 (27:3669)
  • [2] N. Bourbaki, Elements of mathematics: Commutative algebra, Addison-Wesley, Reading, Mass., 1972. MR 0360549 (50:12997)
  • [3] D. K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962), 191-204. MR 26 #176. MR 0142607 (26:176)
  • [4] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147-172. MR 47 #3384. MR 0314834 (47:3384)
  • [5] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234. MR 0254021 (40:7234)
  • [6] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen Macaulay rings (preprint). MR 0340243 (49:4998)
  • [7] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 42 #1823. MR 0266911 (42:1813)
  • [8] M. Nagata, Local rings, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [9] -, Some questions on Cohen-Macaulay rings, J. Math. Kyoto Univ. 13 (1973), 123-128. MR 47 #3386. MR 0314836 (47:3386)
  • [10] O. Zariski and P. Samuel, Commutative algebra. Vol. II, Van Nostrand, New York, 1960. MR 22 #11006. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C15, 13H10

Retrieve articles in all journals with MSC: 13C15, 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0384776-8
Keywords: Graded ring, graded ideal, Cohen-Macaulay, local ring, Gorenstein local ring, rank, Krull dimension, grade
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society