Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ p$-factorable operators


Author: C. V. Hutton
Journal: Trans. Amer. Math. Soc. 205 (1975), 167-180
MSC: Primary 47B10
DOI: https://doi.org/10.1090/S0002-9947-1975-0397462-5
MathSciNet review: 0397462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several classes of operators on Banach spaces, defined by certain summability conditions on the $ k$th approximation numbers, are introduced and studied. Characterizations of these operators in terms of tensor-product representations are obtained. The relationship between these operators and other classes of operators introduced by various authors is studied in some detail.


References [Enhancements On Off] (What's this?)

  • [1] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16, 1955. MR 17, 763. MR 0075539 (17:763c)
  • [2] C. V. Hutton, J. S. Morrell and J. R. Retherford, Approximation numbers and Kolmogoroff diameters of bounded linear operators, Bull. Amer. Math. Soc. 80 (1974), 462-466. MR 0336391 (49:1166)
  • [3] C. V. Hutton, $ {l^p}(E,F)$ and sets of type $ {l^p}$, Math. Ann. (submitted).
  • [4] A. S. Markus, Certain criteria for the completeness of a system of root-vectors of a linear operator in a Banach space, Mat. Sb. 70 (112) (1966), 526-561; English transl., Amer. Math. Soc. Transl. (2) 85 (1969), 51-91. MR 35 #7151. MR 0216316 (35:7151)
  • [5] B. S. Mitjagin and A Pełczyński, Nuclear operators and approximative dimension, Proc. Internat. Congr. Math., Moscow, 1966, Izdat. ``Mir", Moscow, 1968; English transl., Amer. Math. Soc. Transl. (2) 70 (1968), 137-145. MR 39 #6046. MR 0216304 (35:7139)
  • [6] A. Pietsch, Nukleare lokalconvexe Räume, Academie-Verlag, Berlin, 1965. MR 31 #6114. MR 0181888 (31:6114)
  • [7] A. Pietsch, Einige neue Klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. (Bucharest) 8 (1963), 427-447. MR 31 #3874. MR 0179628 (31:3874)
  • [8] -, $ s$-numbers of operators on Banach spaces, Studia Math. (to appear).
  • [9] J. R. Retherford and C. P. Stegall, Fully nuclear and completely nuclear operators with applications to $ {L_1}$ and $ {L_\infty }$ spaces, Trans. Amer. Math. Soc. 163 (1972), 457-492. MR 0415277 (54:3368)
  • [10] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408-411. MR 11, 37. MR 0030693 (11:37d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B10

Retrieve articles in all journals with MSC: 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0397462-5
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society