ABSTRACT. A \(\pi \)-complex is a finite, connected 2-dimensional CW complex with fundamental group \(\pi \). The tree \(HT(\pi) \) of homotopy types of \(\pi \)-complexes has width \(< N \) if there is a root \(Y \) of the tree such that, for any \(\pi \)-complex \(X \), \(X \vee (\vee_{i=1}^{N} S^2_i) \) lies on the stalk generated by \(Y \). Let \(\pi \) be a finite abelian group with torsion coefficients \(\tau_1, \ldots, \tau_n \). The main theorem of this paper asserts that \(\text{width } HT(\pi) < n(n-1)/2 \). This generalizes the results of [4].

1. Introduction. Let \(\pi \) be a finitely presentable group. A \(\pi \)-complex is a finite connected 2-dimensional CW complex with fundamental group \(\pi \). In [4], we gave a complete classification of the homotopy and simple homotopy types of \(Z_n \)-complexes, where \(Z_n \) is the finite cyclic group of order \(n \). In general, we may describe the set of (simple) homotopy types of \(\pi \)-complexes \((S)HT(\pi) \) as a directed tree—a directed, connected graph which has no circuits. A vertex of \((S)HT(\pi) \) is the (simple) homotopy type \([X] \) of a \(\pi \)-complex \(X \). The vertices represented by \(X \) and \(Y \) are joined by an edge directed from \([X] \) to \([Y] \) if and only if \(Y \cong (S) X \vee S^2 \). A \(\pi \)-complex is called a root if \([X] \) possesses no predecessor; the stalk generated by \(X \) is the linearly ordered subgraph of \((S)HT(\pi) \) determined by the (simple) homotopy types of \(X, X \vee S^2, X \vee S^2 \vee S^2, \ldots \).

The main theorem of [4] states that \((S)HT(Z_n) \) is a single stalk generated by the pseudo projective plane \(P_n = S^1 \cup_n e^2 \). We say that the width of \((S)HT(\pi) \leq n \) if there is a root \(X \) such that, for any \(\pi \)-complex \(Y \), \(Y \vee (\vee_{i=1}^{n} S^2_i) \) is on the stalk generated by \(X \).

It is known by the simple homotopy theory of J. H. C. Whitehead [14] that given any \(\pi \)-complex \(Y \) and any root \(X \) there is an integer \(m(Y) \) such that \(Y \vee (\vee_{i=1}^{m(Y)} S^2_i) \) is on the stalk generated by \(X \). Width\((S)HT(\pi) \leq n \) indicates that there is a root \(X \) such that \(m(Y) \) can be chosen \(\leq n \) for any \(\pi \)-complex \(Y \).

Theorem A. Let \(\pi \) be a finite abelian group, \(n = n(\pi) = \text{the number of} \).

Received by the editors January 19, 1973 and, in revised form, October 20, 1973.

AMS (MOS) subject classifications (1970). Primary 55D15, 20F05, 20C05.

(1) Both authors were partially supported by NSF Grant GP-34087.
torsion coefficients of π, and $k = k(\pi) = n(n - 1)/2$. Then the width $HT(\pi) \leq k(\pi)$.

If p is any positive integer, Theorem A implies that width $HT(Z_p)$ is zero, which is the result of [4]. If $\pi = Z_p \times Z_q$, where p divides q, then width $HT(\pi) \leq 1$. In this case, the homotopy tree of $Z_p \times Z_q$-complexes looks at worst like:

$$
\begin{array}{c}
\vdots \\
\cdots [X \vee (\sqrt[4]{S^2})] \\
\cdots [X \vee (\sqrt[3]{S^2})] \\
\cdots [X \vee S^2 \vee S^2] \\
\cdots [X \vee S^2] \\
\cdots [X]
\end{array}
$$

where X is the cellular model [4] of the presentation $(a, b: a^p, b^q, aba^{-1}b^{-1})$ and the horizontal levels represent the vertices with common Euler characteristic. At the present time it is unknown whether any of the other “branches” exist. However, at a given level $\chi \geq 3$, there are only finitely many branches. See Theorem B.

As a corollary to A, we obtain a theorem on the cancellation of “large” sums of 2-spheres with π-complexes. If π is a finite abelian group and X, Y are π-complexes, then $X \vee (\bigvee_{i=1}^{s} S^2_i) \cong Y \vee (\bigvee_{i=1}^{t} S^2_i)$ and $s \geq t > k(\pi)$ imply that $\bigvee_{i=1}^{t-k(\pi)} S^2_i$ can be cancelled from each side (up to homotopy type).

For a given finite group π let $\chi_\pi = \min \{\chi(X) \mid X$ is a π-complex}, $|\pi|$ be the order of π, and φ be the Euler φ-function.

THEOREM B. Let π be a finite group other than Z_2. The number of homotopy types of π-complexes with fixed Euler characteristic $\chi \geq \chi_\pi + 1$ is less than or equal to $\varphi(|\pi|)/2$.

EXAMPLES. (a) If $\pi = Z_2 \times Z_2$, then Theorems A and B imply that the tree of (simple) homotopy types looks at worst like:
where X is the complex modeled on $(a, b: a^2, b^2, [a, b])$.

(b) If $\pi = \Sigma_3$, the group (of order 6) of permutations on 3 letters, then $\text{HT}(\Sigma_3)$ looks at worst like the above tree, where X is a root of $\text{HT}(\Sigma_3)$ of minimal Euler characteristic. The complex X modeled on the presentation $\{a, b: b^2, bab = a^2\}$ is such a root, since $H_2X = 0$ [16].

2. The chain functor. In [4], we associated with each finite presentation $P = (a_1, \ldots, a_n : r_1, \ldots, r_m)$ of a group π, its cellular model

$$P = \left(\bigvee_{i=1}^n S_i^1 \right) \cup \left(\bigvee_{j=1}^m B_j^2 \right),$$

which has a single 0-cell, one 1-cell for each generator of P, and one 2-cell for each relator of P. The jth 2-cell is attached to the 1-skeleton $\bigvee_{i=1}^n S_i^1$ according to the instructions provided by the jth relator r_j.

Then we associated with the cellular model P the cellular chain complex $C_*(\widetilde{P})$ of its universal covering \widetilde{P}. $C_*(\widetilde{P})$ is a chain complex of free π-modules with preferred bases

$$(*) \quad C: C_2(y_1, \ldots, y_m) \xrightarrow{\partial_2} C_1(x_1, \ldots, x_n) \xrightarrow{\partial_1} C_0 = Z[\pi] \xrightarrow{\epsilon} Z \rightarrow 0$$

in which

(a) ϵ is the augmentation homomorphism $Z[\pi] \rightarrow Z[1]$ induced by $\pi \rightarrow 1$.

(b) Exactness holds at C_1, C_0, Z.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We can combine these two processes \(P \rightarrow P \) and \(P \rightarrow C_*(\tilde{\pi}) \) as follows. If \(P = (a_1, \ldots, a_n : r_1, \ldots, r_m) \) is a presentation for \(\pi \), let

\[
1 \rightarrow R_\pi \rightarrow F(a_1, \ldots, a_n) \xrightarrow{\varphi_\pi} \pi \rightarrow 1
\]

be the short exact sequence in which \(F = F(a_1, \ldots, a_n) \) is the free group of rank \(n \) on generators \(\{a_1, \ldots, a_n\} \) and \(R_\pi \) is the normal closure of the relators \(\{r_1, \ldots, r_m\} \). The elements \(\bar{x}_i = \varphi_\pi(a_i) \) \((1 \leq i \leq n)\) serve as a set of generators for \(\pi \). We associate a chain complex \(C_*(P) \) as follows. Let \(C_2(P) = C_2(y_1, \ldots, y_m) \) and \(C_1(P) = C_1(x_1, \ldots, x_n) \) be free \(\pi \)-modules with preferred bases \(\{y_1, \ldots, y_m\} \) and \(\{x_1, \ldots, x_n\} \) in 1-1 correspondence with the relators and generators of \(P \), respectively. Let \(C_0(P) \) be the integral group ring \(\mathbb{Z}[[\pi]] \). Then \(C_*(P) \) is the chain complex

\[
C_*(P): C_2(y_1, \ldots, y_m) \xrightarrow{\partial_2(P)} C_1(x_1, \ldots, x_n) \xrightarrow{\partial_1(P)} \mathbb{Z}[[\pi]] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
\]

whose boundary operators have the following matrix representations with respect to the preferred bases:

\[
\partial_1(P) = (\bar{x}_1 - 1, \ldots, \bar{x}_n - 1) \quad \text{and} \quad \partial_2(P) = (\mathbb{Z}[[\varphi_\pi]](\partial r_i / \partial a_i))
\]

where \(\partial / \partial a_i : \mathbb{Z}[F] \rightarrow \mathbb{Z}[F] \) is the derivative with respect to \(a_i \) in the free calculus of R. H. Fox [5] and \(\mathbb{Z}[\varphi_\pi] : \mathbb{Z}[F] \rightarrow \mathbb{Z}[[\pi]] \) is induced by \(\varphi_\pi : F \rightarrow \pi \).

For example, let \(P = (a_1, a_2 : a_1a_2a_1^{-1}a_2^{-1}) \) be a presentation for \(\pi = \mathbb{Z} \times \mathbb{Z} \) under the correspondence \(\varphi_\pi(a_1) = \bar{x}_1 = (1, 0) \) and \(\varphi_\pi(a_2) = \bar{x}_2 = (0, 1) \). Then the associated chain complex \(C_*(P) \) takes the form

\[
\begin{align*}
C_2(y_1) \xrightarrow{(1 - \bar{x}_2)} & C_1(x_1, x_2) \xrightarrow{(\bar{x}_1 - 1, \bar{x}_2 - 1)} \mathbb{Z}[\mathbb{Z} \times \mathbb{Z}] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0.
\end{align*}
\]

Definition. We say that a chain complex \(C \) as in (*) above is realized by a presentation \(P \) of \(\pi \) if \(C_*(P) = C \).

3. The homomorphism \(\rho \). Given a finite presentation \(P = (a_1, \ldots, a_n : r_1, \ldots, r_m) \) of \(\pi \) there is a surjective group homomorphism \(\rho \) from the relator subgroup \(R_\pi \) onto the free abelian group \(\ker \partial_1(P) \) (a \(\pi \)-module also) \(\subset C_1(P) \) which has kernel \([R_\pi, R_\pi] \).

Following J. H. C. Whitehead in [13] we define the cross homomorphism

\[
\bar{\rho} : F(a_1, \ldots, a_n) \rightarrow C_1(P) \equiv C_1(x_1, \ldots, x_n),
\]

where \(F \) is the free group of rank \(n \), by

(a) \(\bar{\rho}(a_i) = x_i \),

(b) \(\bar{\rho}(a_i^{-1}) = -\varphi_\pi(a_i^{-1})x_i \),

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(c) if W_1, W_2 are any words in F, then $\overline{\rho}(W_1 \cdot W_2) = \overline{\rho}(W_1) + \varphi_p(W_1) \cdot \overline{\rho}(W_2)$.

Recall that $\varphi_p : F \rightarrow \pi$ is the surjection given by the presentation P. Note that by (c), $\overline{\rho}|_{R_p} \equiv \rho$ is a homomorphism. Also, if $r \in R_p$, then

$$\rho(r) = \sum_{i=1}^{n} \left(Z[\varphi_p] \frac{\partial r}{\partial a_i} \right) x_i.$$

Lemma. The following sequence is exact:

$$1 \rightarrow [R_p, R_p] \xrightarrow{i} R_p \xrightarrow{\rho} \ker \partial_1(P) \rightarrow 0.$$

Proof. This is really a restatement of Theorem 8 of [13]. Part (a) of Theorem 8 says that $\rho(R_p) = \ker \partial_1(P)$. Part (b) says that $\ker \rho = \ker \overline{\rho} = \text{image of the commutator subgroup of } \pi_2(P, \pi_1(P)) \text{ in } R_p \subset \pi_1(P^{(1)}) (= F(a_1, \cdots, a_n)) \text{ under the boundary operator } \partial : \pi_2(P, \pi_1(P)) \rightarrow \pi_1(P^{(1)}).$ Since $\text{im } \partial = R_p$, $\ker \rho \subset [R_p, R_p]$. But $\ker \rho \supset [R_p, R_p]$ follows because $\ker \partial_1(P)$ is abelian as a group. □

4. Proof of Theorem A. Let $n = n(\pi)$ be the number of torsion coefficients of the finite abelian group π. Let $\{\tau_1, \cdots, \tau_n\}$ be the torsion coefficients of π, where τ_1, τ_{i+1} for $i = 1, 2, \cdots, n-1$, and $k = k(\pi) = n(n-1)/2$. Furthermore, let P be the π-complex modeled on the standard presentation

$$P = (a_1, \cdots, a_n : a_1^{\tau_1}, \cdots, a_n^{\tau_n}, \{[a_i, a_j] \mid 1 < i < j \leq n\}).$$

Note that $k(\pi)$ is the number of commutators in P and that P is a root of $(S)HT(\pi)$ (see [15]). We will show that if X is any π-complex, then $X \vee (\vee_{i=1}^{k(\pi)} S_i^2)$ is on the stalk generated by P; i.e.,

$$X \vee \left(\bigvee_{i=1}^{k(\pi)} S_i^2 \right) \simeq P \vee \left(\bigvee_{i=1}^{D(X)} S_i^2 \right)$$

where $D(X) = \text{rank } H_2(X)$.

The given π-complex X has the simple homotopy type of a π-complex R modeled on the "pre-abelian" presentation

$$R = (b_1, \cdots, b_l : b_1^{r_1} W_1, b_2^{r_2} W_2, \cdots, b_l^{r_l} W_m, b_{l+1} W_{l+1}, \cdots, b_m W_m)$$

where each $W_i (i = 1, \cdots, m)$ has zero exponent sum on each $b_j (j = 1, \cdots, l)$ [4, Proposition 3]. Notice that $R \vee (\bigvee_{i=1}^{k(\pi)} S_i^2)$ has the simple homotopy type of the π-complex S modeled on the presentation

$$S = (b_1, \cdots, b_l : b_1^{r_1} W_1, \cdots, b_l^{r_l} W_m, b_{l+1} W_{l+1}, \cdots, b_m W_m; \{[b_i, b_j] \mid 1 < i < j \leq n\}).$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Observe that in passing from $R \rightarrow S$ we have added only those commutators corresponding to the nontrivial generators b_1, \ldots, b_n.

Let

$$1 \rightarrow R_S \rightarrow F(b_1, \ldots, b_l) \xrightarrow{\varphi_S} \pi \rightarrow 1$$

be the short exact sequence of groups and homomorphism determined by S. Denote $\varphi_S(b_i)$ by \bar{x}_i ($i = 1, \ldots, n$) and note that, since π is abelian, $\varphi_S(b_i) = 1$ ($n + 1 \leq i \leq l$). The chain complex $C_*(S)$ is given as follows:

$$C_2(S) \xrightarrow{\partial_2(S)} C_1(S)$$

$$C_*(S) : C_2(y_1, \ldots, y_m; z_{12}, z_{13}, \ldots, z_{n-1,n}) \xrightarrow{\partial_2(S)} C_1(x_1, \ldots, x_l) \xrightarrow{\partial_1(S)} Z[\pi] \xrightarrow{\varepsilon} Z \rightarrow 0$$

where $\{z_{ij} \mid 1 \leq i < j \leq n\}$ corresponds to the set of special relators $\{[b_i, b_j] \mid 1 \leq i < j \leq n\}$. Thus

$$\partial_2(z_{ij}) = (1 - \bar{x}_j)x_i + (\bar{x}_i - 1)x_j \quad (1 \leq i < j \leq n).$$

Let \tilde{Z} denote the $n \times k$ matrix of ∂_2 restricted to $\langle z_{12}, z_{13}, \ldots, z_{n-1,n} \rangle$, the submodule of $C_2(S)$ generated by $\{z_{ij} \mid 1 \leq i < j \leq n\}$. By examining the chain complex $C_*(P)$, it follows that $\ker(\partial_1(P)) \cong \ker(\partial_1(S)) \oplus \langle x_{n+1}, \ldots, x_l \rangle$ (we will henceforth identify $\ker \partial_1(P)$ as a submodule of $\langle x_1, \ldots, x_n \rangle \subset C_1(S)$) and that $\ker \partial_1(P)$ is generated by $\{N_ix_i \mid i = 1, \ldots, n\} \cup \{\partial_2z_{ij} \mid 1 \leq i < j \leq n\}$, where $N_i = \sum_{j=0}^{r-1} x_j \in Z[\pi]$. Note also that, since R is a presentation of π with the same generators as S, $\{\partial_2y_i \mid i = 1, \ldots, m\}$ generates $\ker \partial_1(S) = \ker \partial_1(R)$.

As in [4, §3], we use H. Jacobinski's theorem on the cancellation of projective π-modules (see [7], [11, Theorem 19.8], or [12, p. 178]) to choose a new basis $\{y'_1, \ldots, y'_m\} \cup \{z_{ij}\}$ for $C_2(S)$ such that the set $\{\partial_2y'_i \mid i = 1, \ldots, n, l + 1, \ldots, m\}$ generates $\ker \partial_1(P)$ and $\partial_2y'_j = x_j$ for $j = n + 1, \ldots, l$. The matrix for $\partial_2(S)$ with respect to the new basis for $C_2(S)$ and the original basis for $C_1(S)$ becomes

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let \(\psi: F(b_1, \cdots, b_n) \to \pi \) be the surjection \(\phi_S \mid F(b_1, \cdots, b_n) \) and let \(\overline{R} = \ker \psi \). Since the homomorphism \(\rho: \overline{R} \to \ker \partial_1(P) \) is surjective, we can choose relators \(\{ r_1, \cdots, r_n, r_{l+1}, \cdots, r_m \} \subset \overline{R} \) such that

\[
\rho(r_i) = \sum_{j=1}^{n} \left(\partial^2_i \right)_{\partial b_j} \cdot x_j = \partial_2 y_i \quad (i = 1, \cdots, n, l + 1, \cdots, m).
\]

Here it is crucial that \(\partial_2 y_i \in \langle x_1, \cdots, x_n \rangle \) \((i = 1, \cdots, n, l + 1, \cdots, m) \).

Claim. Each \(r_i \) can be written as

\[
r_i = b_1^{\eta_1} b_2^{\eta_2} \cdots b_n^{\eta_n} W_i \quad (i = 1, \cdots, n, l + 1, \cdots, m)
\]

where \(W_i \) has zero exponent sum on each \(b_j, j = 1, \cdots, n \), and \(W_i \in \overline{R} \cap \langle \overline{F}, \overline{F} \rangle \).

Proof. Abelianize \(\overline{F} = F(b_1, \cdots, b_n) \) and obtain the following commutative diagram:

\[
\begin{array}{ccc}
F & \xrightarrow{\psi} & \pi \\
\downarrow A & & \downarrow \psi' \\
\overline{F} & \xrightarrow{\rho} & \overline{F} \cap \langle \overline{F}, \overline{F} \rangle
\end{array}
\]

where \(\overline{F}(b_1, \cdots, b_n) \) is the free abelian group of rank \(n \) generated by \(b_1, \cdots, b_n \). Since \(\psi(r_i) = 1 = \psi'(A(r_i)) = \psi'(b_1^{\eta_1} \cdots b_n^{\eta_n}) = x_1^{\eta_1} \cdots x_n^{\eta_n} \) it follows that each \(\eta_{ij} \) is divisible by order \(\eta_{ij} = \tau_j \) and \(r_i = b_1^{\eta_1} b_n^{\eta_n} W_i \), where \(W_i \in \ker A = \langle \overline{F}, \overline{F} \rangle \). Define \(\beta_{ij} = \eta_{ij} \tau_j \).

Claim. We may change part of the basis of \(C_2(S) \), say to \(\{ y_1'', \cdots, y''_n, y''_{l+1}, \cdots, y''_m \} \cup \{ z_{ij} \} \cup \{ y'_j, | n + 1 \leq j \leq l \} \), so that we may alter each \(r_i \) to \(r'_i = \prod_{j=1}^{n} b_j^{y''_j} \) and preserve \(\rho(r'_i) = \partial_2 y''_i \) for \(i = 1, \cdots, n, l + 1, \cdots, m \).

Proof. This follows because \(\rho([\overline{F}, \overline{F}]) \subset \ker \partial_1(P) \subset \langle x_1, \cdots, x_n \rangle \) is
generated by \(\{ \partial_2 z_{ij} \mid 1 \leq i < j \leq n \} \). Consider
\[
\rho(r_i) = \rho(b_1^{n_1} \cdots b_n^{n_m} W_i) = \rho(r'_i) + \rho(W_i).
\]
But
\[
\rho(W_i) = \sum_{1 \leq i < k \leq n} \delta_{ijk} \partial_2 z_{jk} \quad (\delta_{ijk} \in \mathbb{Z}[[t]])
\]
Let
\[
y''_i = y'_i - \sum_{1 \leq i < k \leq n} \delta_{ijk} z_{jk} \quad (i = 1, \cdots, n, l + 1, \cdots, m).
\]
Clearly \(\partial_2 y''_i = \rho(r'_i) \) and \(\{ y''_1, \cdots, y''_n, y''_{l+1}, \cdots, y''_m \} \cup \{ z_{ij} \} \cup \{ y''_{n+1}, \cdots, y''_{m} \} \) is a basis for \(C_2(S) \).
Thus \(\partial_2 (y''_i) = \rho(r''_i) \) and \(\{ y''_1, \cdots, y''_n, y''_{l+1}, \cdots, y''_m \} \cup \{ z_{ij} \} \cup \{ y''_{n+1}, \cdots, y''_{m} \} \) generates \(\ker \partial_t(P) \). Thus for each \(s = 1, \cdots, n \)
\[
N_s x_s = \sum_{i=1, l+1}^{n, m} \alpha_{si} \rho(r'_i) + \sum_{1 \leq i < j \leq n} r_{sij} \partial_2 z_{ij} \quad (\alpha_{si}, r_{sij} \in \mathbb{Z}[[t]])
\]
Denoting the second term by \(T_s (T_s \in \rho([F, F])) \) we have
\[
N_s x_s = \sum_i \alpha_{si} \left(\sum_j \beta_{ij} N_j x_j \right) + T_s = \sum_j \left(\sum_i \alpha_{si} \beta_{ij} \right) N_j x_j + T_s.
\]
By augmenting the above equation, and observing that \(e(T_s) = 0 \) and \(e(N_s) = \tau_j \), we have \((\Sigma_i e(\alpha_{si}) \beta_{ij}) \tau_j x_j = \delta_{sj} \tau_j x_s \). Thus we deduce
\[
\sum_{i=1, l+1}^{n, m} e(\alpha_{si}) \beta_{ij} = \delta_{sj}, \quad \left\{ \begin{array}{l} s = 1, \cdots, n \\ j = 1, \cdots, n \end{array} \right\}
\]
The above argument shows we can choose \(\alpha_{si} \in \mathbb{Z} \) (let \(\alpha_{si} = \sum e(\alpha_{si}) \)) such that
\[
N_s x_s = \sum_{i=1, l+1}^{n, m} \alpha_{si} \rho(r'_i) \quad (s = 1, \cdots, n).
\]
Let \(p = m + n - l \), the number of basis elements in the set \(\{ y''_i \} \). Let \((\alpha_{si}) = A \) and \((\beta_{ij}) = B \) denote respectively the \(n \times p \) and \(p \times n \) matrices with integer coefficients. Relation (4.1) implies that
\[
AB = I_n
\]
where \(I_n \) is the identity \(n \times n \) matrix. Using (4.3), an easy argument on free abelian groups shows that there exists a nonsingular \(p \times p \) matrix \(C \) with integer coefficients such that
\[
CB = (I_n | 0) \quad (n \times p \text{ matrix}).
\]
Apply the matrix \(C \) to the partial basis \(\{ y''_i \mid i = 1, \cdots, n, l + 1, \cdots, m \} \)
of $C_2(S)$ to obtain a new basis $\{w_i | i = 1, \ldots, n, l + 1, \ldots, m\} \cup \{z_{ij}\} \cup \{y'_j | n + 1 \leq j \leq l\}$ for C_2. Then

$$\partial_2(w_i) = \partial_2 \sum_j c_{ij} y_j'' = \sum_j c_{ij} \partial_2 y_j'' = \sum_s \left(\sum_j c_{ij} \beta_{js}\right) N_s x_s$$

by (4.4). The matrix of ∂_2 with respect to this new basis for $C_2(S)$ and the old basis for $C_1(S)$ is

$$\begin{pmatrix}
N_1 & 0 & \cdots & 0 \\
0 & N_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & N_n \\
\end{pmatrix}$$

The chain complex with this new preferred basis for C_2 can clearly be realized by the presentation

$$V = \langle b_1, \ldots, b_l : b_1^r, \ldots, b_m^r, b_{n+1}, \ldots, b_l, 1, \ldots, 1, \{[b_i, b_j] | 1 \leq i < j \leq n\} \rangle.$$

The cellular model V has the same simple homotopy type as $P \vee (\vee_{i=1}^{m-l} S^2)$. The chain complexes $C_*(S)$ and $C_*(V)$ differ only by a change of basis in C_2. Proposition 4 of [4] shows that there is a homotopy equivalence $f : V \to S$ which is the identity on the 1-skeleton and such that the matrix of $f_2# : C_2(V) \to C_2(S)$ is exactly the matrix N recording the basis change in C_2. Furthermore, this matrix N represents the Whitehead torsion $\tau(f) \in \text{Wh}(\pi_1 V)$ of the equivalence f. This completes the proof of Theorem A. \hfill \square

5. Proof of Theorem B. In this section we will show that for a finite group $\pi \neq Z_2$, the number of homotopy types of π-complexes with a given Euler characteristic χ is less than or equal to $\varphi(|\pi|)/2$, provided $\chi \geq \chi_{\pi} + 1$.

Definition. Let M be a finitely generated π-module. M has the **cancellation property** if for any finitely generated π-module N such that $M \oplus (\mathbb{Z} \pi)^i \cong N \oplus (\mathbb{Z} \pi)^j$, we have $N \cong M \oplus (\mathbb{Z} \pi)^{i-j}$.
The following lemma was shown to us by R. G. Swan [12].

Lemma. Let \(X \) be any \(\pi \)-complex. Then \(\pi_2(X) \oplus \mathbb{Z}\pi \) has the cancellation property.

Proof. We will show that \(\pi_2(X) \oplus \mathbb{Z}\pi \) satisfies the Eichler condition. That \(\pi_2(X) \oplus \mathbb{Z}\pi \) has the cancellation property follows from the theorem of H. Jacobinski ([7], [12, p. 178]). A finitely generated, torsion free \(\pi \)-module \(M \) satisfies the Eichler condition \(\iff \) the algebra \(\text{End}_{\mathbb{Q}\pi}(Q \otimes M) \) has no totally definite quaternion algebra as a direct summand (see [7] for a definition).

Consider the cellular chain complex \(C_*(\tilde{X}) \) of the universal cover \(\tilde{X} \) of \(X \). This gives an exact sequence of \(\pi \)-modules

\[
0 \rightarrow \pi_2(X) \rightarrow (\mathbb{Z}\pi)^r \rightarrow (\mathbb{Z}\pi)^s \rightarrow \mathbb{Z} \rightarrow 0.
\]

Tensoring with \(\mathbb{Q} \), the rationals. The resulting sequence splits and gives

\[
\pi_2(X) \otimes \mathbb{Q} \cong (\mathbb{Q}I)^{r+1} \oplus \mathbb{Q}^n
\]

where \(n = r - s \) and \(I \) is the augmentation ideal. Therefore \(\mathbb{Q} \otimes (\pi_2(X) \oplus \mathbb{Z}\pi) \cong (\mathbb{Q}I)^{n+2} \oplus \mathbb{Q}^{n+1} \) and

\[
\text{End}_{\mathbb{Q}\pi}(Q \otimes (\pi_2(X) \oplus \mathbb{Z}\pi)) \cong M_{n+2}(\text{End}_{\mathbb{Q}\pi}QI) \times M_{n+1}(\mathbb{Q}).
\]

Since \(n \geq 0 \), no totally definite quaternion algebras occur. \(\square \)

We appeal to the theory of 2-types (see [10]) and the cancellation theorem above. Let \(X \) be any \(\pi \)-complex with \(\chi(X) \geq \chi_\pi + 1 \). By a theorem of J. H. C. Whitehead [13],

\[
\pi_2(X) \oplus (\mathbb{Z}[\pi])^m \cong \pi_2(Y) \oplus (\mathbb{Z}[\pi])^n
\]

where \(Y \) is a \(\pi \)-complex with \(\chi(Y) = \chi_\pi \), and \(n \geq m + 1 \). The cancellation theorem above guarantees that

\[
\pi_2(X) \cong \pi_2(Y) \oplus (\mathbb{Z}[\pi])^{n-m}
\]

where \(n - m = \chi(X) - \chi_\pi \). Thus \(\pi \)-complexes with fixed Euler characteristic \(\chi \geq \chi_\pi + 1 \) have the same second homotopy module

\[
\pi_2 \cong \pi_2(Y) \oplus (\mathbb{Z}[\pi])^{\chi-\chi_\pi}.
\]

We conclude that their algebraic 2-types \((\pi, \pi_2, k)\) differ only by the obstruction invariant \(k \in H^3(\pi, \pi_2) \cong Z_{\text{int}} \). But each \(k \in H^3(\pi, \pi_2) \) which is the obstruction invariant for a \(\pi \)-complex must be a generator of \(H^3(\pi, \pi_2) \) (see [3]). There are exactly \(\varphi(|\pi|) \) such generators. The sign changing automorphism

\[
\lambda: \pi_2 \rightarrow \pi_2 \quad (\lambda(x) = -x, x \in \pi_2)
\]

together with \(\text{id}: \pi \rightarrow \pi \) gives an isomorphism of the 2-types

\[
\lambda: \pi_2 \rightarrow \pi_2 \quad (\lambda(x) = -x, x \in \pi_2)
\]
and shows that the number of k-invariants representing distinct homotopy types of π-complexes with Euler characteristic χ is less than or equal to $\varphi(|\pi|)/2$, since $\pi \neq \mathbb{Z}_2$.

BIBLIOGRAPHY