Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Simultaneous approximation of additive forms


Author: Ming Chit Liu
Journal: Trans. Amer. Math. Soc. 206 (1975), 361-373
MSC: Primary 10F10
DOI: https://doi.org/10.1090/S0002-9947-1975-0366820-7
MathSciNet review: 0366820
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X = ({x_1}, \cdots ,{x_s})$ be a vector of $ s$ real components and $ {f_i}(X) = \sum\nolimits_{j = 1}^s {{\theta _{ij}}x_j^k} (k = 2,3, \cdots ;i = 1, \cdots ,R) R$ additive forms, where $ {\theta _{ij}}$ are arbitrary real numbers. The author obtains some results on the simultaneous approximation of $ \vert\vert{f_i}(X)\vert\vert$, where $ \vert\vert t\vert\vert$ means the distance from $ t$ to the nearest integer.


References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys., no. 45, Cambridge Univ. Press, New York, 1957. MR 19, 396. MR 0087708 (19:396h)
  • [2] R. J. Cook, On the fractional parts of a set of points, Mathematika 19 (1972), 63-68. MR 0330060 (48:8399)
  • [3] -, The fractional parts of an additive form, Proc. Cambridge Philos. Soc. 72 (1972), 209-212. MR 45 #6764. MR 0297712 (45:6764)
  • [4] H. Davenport, On a theorem of Heilbronn, Quart. J. Math. Oxford Ser. (2) 18 (1967), 339-344. MR 36 #6355. MR 0223307 (36:6355)
  • [5] H. Heilbronn, On the distribution of the sequence $ {n^2}\theta (\bmod 1)$, Quart. J. Math. Oxford Ser. 19 (1948), 249-256. MR 10, 284. MR 0027294 (10:284c)
  • [6] L. K. Hua, Additive theory of prime numbers, Trudy Mat. Inst. Steklov. 22 (1947); English transl., Transl. Math. Monographs, vol. 13, Amer. Math. Soc., Providence, R. I., 1965. MR 10, 597; 33 #2614. MR 0194404 (33:2614)
  • [7] E. Landau, Vorlesungen über Zahlentheorie. Band I, Hirzel, Leipzig, 1927; English transl., Elementary number theory, Chelsea, New York, 1958. MR 19, 1159.
  • [8] M. C. Liu, Simultaneous approximation of two additive forms, Proc. Cambridge Philos. Soc. 75 (1974), 77-82. MR 0332668 (48:10994)
  • [9] I. M. Vinogradov, Analytischer Beweis des Satzes über die Verteilung der Bruchteile eines ganzen Polynoms, Bull. Acad. Sci. USSR (6) 21 (1927), 567-578.
  • [10] -, The method of trigonometrical sums in the theory of numbers, Trudy Mat. Inst. Steklov. 23 (1947); English transl., Interscience, New York, 1954. MR 10, 599; 15,941. MR 0029417 (10:599a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10F10

Retrieve articles in all journals with MSC: 10F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0366820-7
Keywords: Additive form, Diophantine approximation, simultaneous approximation, asymptotic behaviour
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society