THE RADON-NIKODYM PROPERTY
IN CONJUGATE BANACH SPACES

BY

CHARLES STEGALL(1)

ABSTRACT. We characterize conjugate Banach spaces X^* having the
Radon-Nikodym Property as those spaces such that any separable subspace
of X has a separable conjugate. Several applications are given.

Introduction. There are several equivalent formulations of the Radon-Nikodym
Property (RNP) in Banach spaces; we give perhaps the earliest definition: a
Banach space X has RNP if given any finite measure space (S, Σ, μ) and any X
valued measure m on Σ, with m having finite total variation and being absolutely
continuous with respect to μ, then m is the indefinite integral with respect to μ
of an X valued Bochner integrable function on S. The first study of this property
was by Dunford and Pettis [4] and Phillips [11] (see also [5]).

It follows from the work of Dunford and Pettis and Phillips that reflexive
Banach spaces and separable conjugate spaces have RNP. More generally, the fol-
lowing is true:

Theorem A. If X is a Banach space such that for any separable subspace
Y of X, Y^* is separable, then X^* has RNP.

The above result was observed by Uhl [15] and also can be obtained from
a result of Grothendieck (Theorem B below).

The first characterizations of RNP were given by Grothendieck in [6].
Grothendieck’s approach, the one we shall use, is that of studying certain classes
of operators. An operator $T: X \to Y$ is a continuous linear function T from the
Banach space X to the Banach space Y. An operator $T: X \to Y$ is said to be an
integral operator if there exist a compact Hausdorff space K, a Radon measure μ
on K, and operators R, and S, such that

(1) Research partially supported by a grant from the Research Foundation of the State
University of New York.
is commutative. The operator Q from Y to Y^{**} is the canonical evaluation operator; the operator J is the canonical operator from $C(K)$, the continuous real (or complex) valued functions on K, to $L_1(K, \mu)$, the equivalence classes of μ-measurable, absolutely summable functions on K. An operator $T: X \to Y$ is nuclear if there exist sequences $\{x_n^*\} \subseteq X^*$, $\{y_n\} \subseteq Y$ such that $\sum_{n=1}^{\infty} \|x_n^*\| \cdot \|y_n\| < +\infty$ and $Tx = \sum_{n=1}^{\infty} x_n^*(x)y_n$. Let K be a compact Hausdorff space and μ a Radon measure on K. A bounded subset of $L_1(K, \mu)$ is said to be equi-measurable [6, p. 20] (with respect to μ) if for each $\varepsilon > 0$ there exists a compact subset K_0 of K such that $|\mu(K \setminus K_0)| < \varepsilon$ and $\{f|_{K_0}: f \in S\}$ is a relatively compact subset of $L^1(K_0, \mu)$. Grothendieck proved the following [6, Proposition 9, p. 64]:

Theorem B. Let X be a Banach space, μ a Radon measure on the compact Hausdorff space K, and T an operator from X to $L_1(K, \mu)$; the operator JT is nuclear if and only if $\{JTx: \|x\| \leq 1\}$ is an equi-measurable subset of $L_1(K, \mu)$.

From this theorem the following results can be obtained:

(B.1) X^* has RNP if and only if every integral operator $T: X \to L_1(S, \Sigma, \mu)$ is nuclear ($L_1(S, \Sigma, \mu)$ any measure space). (This is implicit in [6], but see [3] for a development of this approach.)

(B.2) X has RNP if and only if for any operator $T: L_1(S, \Sigma, \mu) \to X$ there exist a set Γ and operators $S: I_1(\Gamma) \to X$, $R: I_1(S, \Sigma, \mu) \to I_1(\Gamma)$ such that $SR = T$. (This result was perhaps first obtained in [9] where several applications are given.)

We now give a geometrical characterization of RNP. The following definition is due to Rieffel [13] (who also proved a Radon-Nikodym theorem [14]). A subset S of a Banach space will be called dentable if for every $\varepsilon > 0$ there is an $x \in S$ such that $x \notin \overline{B(S \setminus B(x, \varepsilon))}$. $B(X, \varepsilon)$ is the closed ball about x of radius ε and $\overline{\text{C}(M)}$ is the closed convex hull of the set M. Rieffel proved that if X is a Banach space such that every bounded subset of X is dentable then X has RNP [13]. In [10] Maynard made the following definition: a subset S of a Banach space will be called s-dentable if for every $\varepsilon > 0$ there is an $x \in S$ such that $x \notin s(S \setminus B(x, \varepsilon))$ ($s(M)$, the sequential hull of M, is the set of all converging series $\sum_{i=1}^{\infty} \lambda_i x_i$ such that $\lambda_i \geq 0$, $\sum_{i=1}^{\infty} \lambda_i = 1$, and $x_i \in M$). Maynard proved that if a Banach space X has a bounded, non-s-dentable subset then X fails RNP.

Recently, R. Phelps and W. J. Davis [1] have shown that if a Banach space has a
bounded, nondentable subset then it has a bounded, non-s-dentable subset. These results may be combined to give the following result:

Theorem C. A Banach space X has RNP if and only if every bounded subset of X is dentable.

This is by no means a comprehensive discussion of the Radon-Nikodym Property. The reader is referred to the papers listed above as well as their bibliographies for more information.

Our purpose here is to prove the converse of Theorem A: if X^* has RNP then for every separable subspace Y of X, Y^* is separable. We prove a more general result (Theorem 1 below) from which the above result follows. We give several applications of this result.

An abstract of this paper was presented at the conference in Approximation Theory and Functional Analysis at Kent State University in June 1973. The author would like to thank the participants in this conference and the International Conference on Banach Spaces at Wabash College in June 1973 with whom he had many useful conversations.

Results. We begin with the following elementary observation.

Lemma 1. Let Y be a nonseparable Banach space. Then for $e > 0$, there exists for every countable ordinal α, $y_\alpha \in Y$, $y_\alpha^* \in Y^*$ such that $\|y_\alpha\| = 1$, $\|y_\alpha^*\| < 1 + e$ and

$$y_\beta^*(y_\alpha) = \begin{cases} 1, & \alpha = \beta, \\ 0, & \alpha < \beta. \end{cases}$$

Proof. Choose $y_1 \in Y$ and $y_1^* \in Y^*$ such that $\|y_1\| = \|y_1^*\| = y_1^*(y_1) = 1$. Assume we have made the construction for all α, $\alpha < \beta$, where β is a countable ordinal. Since $\{y_\alpha\}_{\alpha < \beta}$, the closed linear span of $\{y_\alpha\}_{\alpha < \beta}$, is separable there exists a $z_\beta^* \in Y^*$ such that $z_\beta^*(y_\alpha) = 0$ for all α, $\alpha < \beta$. Let $y_\beta^* = (1 + e/2)z_\beta^*/\|z_\beta^*\|$. Since $1 < \|y_\beta^*\| < 1 + e$ there exists y_β, $\|y_\beta\| = 1$ such that $y_\beta^*(y_\beta) = 1$.

If we let Δ denote the Cantor set, by a Haar system on Δ we mean a sequence of functions $\{h_{n,i}\} \subseteq C(\Delta)$, $n = 0, 1, 2, \cdots$, $i = 0, 1, \cdots, 2^n - 1$; $h_{n,i} = \chi_{A_{n,i}}$ (the characteristic function of the set $A_{n,i}$); $A_{0,0} = \Delta$; each $A_{n,i}$ is nonempty, open and closed; for each n, $\bigcup_{i=0}^{2^n-1} A_{n,i} = \Delta$ and $\{A_{n,i}\}$ is pairwise disjoint; $A_{n,i} = A_{n+1,2i} \cup A_{n+1,2i+1}$; and, for each choice of indices i_n, $0 \leq i_n \leq 2^n - 1$, $\bigcap_{n=0}^{\infty} A_{n,i_n}$ is either empty or a one point set.

Theorem 1. If X is a separable Banach space such that X^* is nonseparable, then for $e > 0$ there exist a subset Δ of the unit sphere of X^* which is weak*
homeomorphic to the Cantor set, a Haar system \{h_{n,i}\} for \(\Delta\), and a sequence \(\{x_{n,i}\} \subseteq X\) with \(\|x_{n,i}\| < 1 + \varepsilon\) such that if \(T: X \to C(\Delta)\) is the canonical evaluation operator, then
\[
\sum_{n=0}^{\infty} \sum_{i=0}^{2^n-1} \|Tx_{n,i} - h_{n,i}\| < \varepsilon.
\]

Proof. Since \(X^*\) is nonseparable, apply Lemma 1 to obtain \(\{x^*_\alpha\} \subseteq X^*\), \(\{x^*_\alpha\} \subseteq X^{**}\), \(1 < \alpha < \omega_1\), \(\omega_1\) the first uncountable ordinal, such that \(\|x^*_\alpha\| = 1\), \(\|x^{**}_\alpha\| < 1 + \varepsilon\), and \(x^{**}_\alpha(x^*_\alpha) = 1\), \(x^{**}_\beta(x^*_\alpha) = 0\) if \(\alpha < \beta\). Since \(\{x^*_\alpha: \|x^*_\alpha\| < 1\}\), the unit ball of \(X^*\), is a compact metric space in the weak* topology and \(\{x^*_\alpha\}\) is an uncountable subset of the unit ball, the set \(A\) of condensation points of \(\{x^*_\alpha\}\) contains all but an at most countable subset of \(\{x^*_\alpha\}\). Thus there exists a countable ordinal \(\gamma\) such that for any \(\beta \geq \gamma\) and any weak* open set \(U\) containing \(x^*_\beta\), the set \(U \cap \{x^*_\alpha\}_{\alpha \geq \beta}\) is uncountable.

We shall construct for each \(n = 0, 1, 2, \cdots\) weak* open sets in the unit ball of \(X^*\), and a sequence \(\{x^*_n\}_{n=0}^{\infty} = 2^n - 1\) in \(X\) such that

1. weak* diameter \((U_{n,i}) < 1/(n + 2)\) and the weak* closure of \(U_{n,i}\), \(\overline{U}_{n,i}\), is disjoint from \(\{x^*_n: \|x^*_n\| < 1/(n + 2)\}\);
2. \(U_{n,i} \cap A \neq \emptyset\);
3. \(U_{n+1,2i} \cup U_{n+1,2i+1} \subseteq U_{n,i}\);
4. \(x_{n,i} \in X, \|x_{n,i}\| < 1 + \varepsilon\) and for each \(n\), \(|x^*(x_{n,i}) - \delta_{ij}| < \varepsilon/4^{n+1}\) for \(x^* \in U_{n,i}\).

For \(n = 0\), choose any \(x^*_0 \in A\). Since \(x^{**}_\beta(x^*_\alpha) = 1\) and \(\|x^{**}_\beta\| < 1 + \varepsilon\), we know by Helly’s Theorem [2, Theorem 3, p. 38] that there exists an \(x_{0,0} \in X\), \(\|x_{0,0}\| < 1 + \varepsilon\), such that \(x^*_\beta(x_{0,0}) = 1\). Let \(U_{0,0}\) be a weak* open neighborhood of \(x^*_\beta\) of weak* diameter less than \(1/2\), \(U_{0,0} \subseteq \{x^*_n: \|x^*_n\| < 1\} \cap \{x^*_n: \|x^*_n\| < 1 + \varepsilon/4\} \cap A\), and \(U_{0,0} \cap \{x^*_n: \|x^*_n\| < 1/2\} = \emptyset\).

Assume we have made the construction up to \(n\). Choose \(x^*_{\beta_{n,i}} \in U_{n,i} \cap A\) with \(\beta_{n,0} < \beta_{n,1} < \cdots < \beta_{n,2^n-1}\). Choose \(x^*_{\beta_{n+1,0}} \in U_{n,0} \cap A\) with \(\beta_{n+1,0} > \beta_{n,2^n-1}\). Since \(x^{**}_{\beta_{n+1,0}}(x^*_{\beta_{n,0}}) = 1\) and \(x^{**}_{\beta_{n+1,0}}(x^*_{\alpha}) = 0\) for all \(\alpha < \beta_{n+1,0}\), there exists by Helly’s theorem an \(x_{n+1,0} \in X, \|x_{n+1,0}\| < 1 + \varepsilon\), such that \(x^*_{\beta_{n,i}}(x_{n+1,0}) = 0\) for \(0 < i < 2^n\) and \(x^*_{\beta_{n+1,0}}(x_{n+1,0}) = 1\). Choose \(x^*_{\beta_{n+1,2n}} \in U_{n,1} \cap A\) such that \(\beta_{n+1,2} > \beta_{n+1,0}\) and \(x^*_{\beta_{n+1,2}}(x_{n+1,0}) < \varepsilon/4^{n+2}\). (This happens because \(x_{n+1,0}\) vanishes at some point of \(U_{n,1} \cap A\) so \(x_{n+1,0}\) is less than \(\varepsilon/4^{n+2}\) on some open, hence uncountable, subset of \(U_{n,1} \cap A\); in this uncountable set there must be a point of index larger than \(\beta_{n+1,0}\).) Now choose \(x_{n+1,2} \in X, \|x_{n+1,2}\| < 1 + \varepsilon\), \(x^*_{\beta_{n,i}}(x_{n+1,2}) = 0\) for \(0 < i < 2^n\), \(x^*_{\beta_{n+1,0}}(x_{n+1,2}) = 0\) and \(x^*_{\beta_{n+1,2}}(x_{n+1,2}) = 1\). In general, for \(0 < k < 2^n\), choose \(x^*_{\beta_{n+1,2k}} \in \)
THE RADON-NIKODYM PROPERTY

Choose \(x_{n+1,1}^* \in U_{n,0} \cap A \) such that \(|x_{n+1,1}^* (x_{n+1,2k})| < \varepsilon/4^{n+2} \) for \(0 \leq k < 2^n \) and \(\beta_{n+1,1} = \beta_{n+1,2k+1} \). Choose \(x_{n+1,1}^* \in X, \|x_{n+1,1}^*\| < 1 + \varepsilon \) such that \(x_{n+1,1}^* (x_{n+1,2k}) = 0 \) for \(0 \leq k < 2^n \), \(x_{n+1,2k}^* (x_{n+1,1}) = 0 \) for \(0 \leq k < 2^n \) and \(x_{n+1,2k+1}^* (x_{n+1,1}) = 0 \). In general, for \(0 \leq k < 2^n \), choose \(x_{n+1,2k+1}^* \in U_{n,k} \cap A, \beta_{n+1,2k+3} > \beta_{n+1,2k+1} \), and \(x_{n+1,2k+1}^* \in X, \|x_{n+1,2k+1}^*\| < 1 + \varepsilon \), such that

\[
\begin{align*}
(I) & \quad x_{n+1,2k}^* (x_{n+1,2k+1}) = 0, 0 \leq k < 2^n; \\
(ii) & \quad x_{n+1,2k+2}^* (x_{n+1,2k+1}) = 0, 0 \leq k < 2^n; \\
(iii) & \quad x_{n+1,2k+3}^* (x_{n+1,2k+1}) = 1, 0 \leq k < 2^n; \\
(iv) & \quad |x_{n+1,2k+1}^* (x_{n+1,2k+1})| < \varepsilon/4^{n+2}, 0 \leq k < l < 2^n.
\end{align*}
\]

Define, for \(0 \leq j < 2^{n+1} \),

\[U_{n+1,j} = \{ x^* \in U_{n,[j/2]} : |x^*(x_{n+1,k}) - \delta_{kj}| < \varepsilon/4^{n+2} \text{ for all } k, 0 \leq k < 2^{n+1} \}. \]

We have that \(x_{n+1,j}^* \in U_{n+1,j} \) for \(0 \leq j < 2^{n+1} \). Choose \(U_{n+1,j} \) a weak* neighborhood of \(x_{n+1,j}^* \) with weak* diameter less than \(1/(n+3) \), weak* closure of \(U_{n+1,j} \) is disjoint from \(\{ x^* : \|x^*\| \leq 1/(n+3) \} \), and \(U_{n+1,j} \subseteq U_{n+1,j}^* \). This completes the construction.

Let \(\Delta = \bigcap_{n=1}^{\infty} \bigcup_{j=0}^{n-1} \overline{U}_{n,j}^* \). As is well known \([2, p. 93]\), \(\Delta \) is homeomorphic to the Cantor set and we have that \(\Delta \subseteq \{ x^* : \|x^*\| = 1 \} \). If we let \(h_{n,i} = x_{A_{n,i}} A_{n,i} = \Delta \cap \overline{U}_{n,i}^* \), then \(\{ h_{n,i} \} \) is a Haar system and

\[
\sup\{ |x^*(x_{n,i}) - h_{n,i}(x^*)| : x^* \in \Delta \} = \sup\{ |x^*(x_{n,i}) - h_{n,i}(x^*)| : x^* \in \bigcup U_{n,j}, 0 \leq j < 2^n \} \leq \varepsilon/4^{n+1}.
\]

Let \(T : X \to C(\Delta) \) be the canonical evaluation operator \((Tx)(x^*) = x^*(x) \); then we have that

\[
\sum_{b=0}^{\infty} \sum_{i=0}^{2^n-1} \|Tx_{n,i} - h_{n,i}\| \leq \sum_{n=0}^{\infty} \sum_{i=0}^{2^n-1} \frac{\varepsilon}{4^{n+1}} = \sum_{n=0}^{\infty} 2^n \frac{\varepsilon}{4^{n+1}} = \frac{\varepsilon}{2}. \quad \text{Q.E.D.}
\]
COROLLARY 1. If X is separable and S is a nonseparable subset of X^* in the norm topology and is a weak* $G_δ$ set, then for $e > 0$ there exist a subset $Δ ⊆ S$ which is weak* homeomorphic to the Cantor set, a Haar system $\{h_{n,i}\}$ on $Δ$, a sequence $\{x_{n,i}\} ⊆ X$, and a constant $C > 0$ such that $\|x_{n,i}\| ≤ C$ and $\sum_{n=0}^{∞} \sum_{i=0}^{n-1} \|Tx_{n,i} - h_{n,i}\| < ε$ where $T: X → C(Δ)$ is the canonical evaluation operator.

PROOF. The proof is essentially the same as that of Theorem 1 with the additional restriction that each $U^*_n ⊆ V_n$ where V_n are weak* open sets such that $\cap_{n=0}^{∞} V_n = S$.

THEOREM 2. Suppose X^* has RNP. Then for every separable subspace Y of X, Y^* is separable.

PROOF. Assume there exists a separable subspace Y of X such that Y^* is not separable. By Theorem 1, there exist a Haar system $\{h_{n,i}\}$ on the Cantor set and an operator $T: Y → C(Δ)$ such that $\|T\| ≤ 1$, $\sum_{n=0}^{∞} \sum_{i=0}^{n-1} \|Ty_{n,i} - h_{n,i}\| < ε$, $\|y_{m,i}\| < 1 + ε$. For v any measure on $Δ$ let $L^∞_{∞}(Δ, ν)$ denote the equivalence classes of $ν$ essentially bounded functions on $Δ$. We shall consider T as an operator from Y to $L^∞_{∞}(Δ, ν)$. We may extend T to an operator $\tilde{T}: X → L^∞_{∞}(Δ, ν)$ since $L^∞_{∞}(Δ, ν)$ is an injective space [2, pp. 94–95]. We shall complete the proof in two different ways:

(1) Suppose $ν$ is not purely atomic. Let K_0 be a compact subset of $Δ$, K_0 has no atoms, $ν(K_0) > 0$. It is easy to see that $\{Ty_{n,i}|K_0: n = 0, 1, \cdots; 0 ≤ i < 2^n\}$ is not relatively compact in $L^∞_{∞}(K_0, ν)$. By Theorem B, JT is not nuclear ($J: L^∞_{∞}(Δ, ν) → L^*_{1}(Δ, ν)$ the canonical operator). Thus by Theorem (B.1) X^* does not have RNP.

(2) Suppose $ν$ is the measure on $Δ$ such that $\int h_{n,i}dν = 2^{-n}$.

Regarding $2^n h_{n,i}$ as elements of $L^∞_{∞}(Δ, ν)^*$, let $S = \{\tilde{T}^*(2^n h_{n,i})\}$. Suppose $n ≥ m$ and $i ≠ j$ if $n = m$; then

$$\|\tilde{T}^*(2^n h_{n,i}) - \tilde{T}^*(2^m h_{m,j})\| ≥ \frac{1}{1 + ε} \left| 2^n \int_{A_{n,i}} x^*(y_{n,i})dν - 2^m \int_{A_{m,j}} x^*(y_{n,i})dν \right|$$

$$= \frac{1}{1 + ε} \left| 2^n \int_{A_{n,i}} h_{n,i}(x^*)dν - 2^m \int_{A_{m,j}} h_{n,i}(x^*)dν \right|$$

$$+ \frac{1}{1 + ε} \left| 2^n \int_{A_{n,i}} [x^*(y_{n,i}) - h_{n,i}(x^*)]dν - 2^m \int_{A_{m,j}} [x^*(y_{n,i}) - h_{n,i}]dν \right|$$

$$≥ \frac{1}{1 + ε} \left(1 - \frac{1}{2} - \frac{ε}{4^n+1} - \frac{ε}{4^n+1} \right) = \frac{1}{1 + ε} \left(\frac{1}{2} - \frac{2ε}{4^n+1} \right).$$
By choosing $0 < \epsilon < 1/4$, then the distance between any two distinct points of S is greater than $1/4$; but $T^* \left(2^n h_{n,i} \right) = \frac{1}{2} \left(T^* \left(2^{n+1} h_{n+1,1,i} \right) + T^* \left(2^{n+1} h_{n+1,2,i+1} \right) \right)$. Thus S is clearly not dentable (not even s-dentable); by Theorem C, X^* does not have RNP.

Corollary 2. Let X be a Banach space such that there exists a separable subspace Y of X such that Y^* is nonseparable. (Equivalently, X^* does not have RNP.) Then there exists a separable subspace Z of X^* such that Z is not isomorphic to a subspace of a separable conjugate space.

Proof. It is proved in [15] that if every separable subspace Z of X^* is isomorphic to a subspace of a separable conjugate space, then X^* has RNP.

It is not difficult to see that the arguments of Lemma 1 and Theorem 1 may be repeated for higher ordinals. In particular, this argument will give a proof of the complex version of a theorem proved by Leach and Whitfield [8] in the real case:

Theorem 3. Let X be a Banach space such that $\dim X < \dim X^*$. ($\dim X$ is the smallest cardinal m such that there exists a set S of cardinality m such that $|S| = X$.) Then there exists a separable subspace Y of X such that Y^* is nonseparable.

Let $\{h_{n,i}\}$ be a Haar system for the Cantor set and let μ be the measure on Δ such that $\int h_{n,i} d\mu = \mu(A_{n,i}) = 2^{-n}$, $h_{n,i} = \chi_{A_{n,i}}$. Let $I_1 = \{(t_{n,i}) : n = 0, i = 0, 1, 2, \cdots, 0 \leq i < 2^{n-1}, t_{n,i}$ real (or complex), $|t_{0,0}| + \Sigma_{n=1}^{\infty} \Sigma_{i=0}^{2^{n-1}-1} |t_{n,i}| < +\infty \}$. Let $b_{0,0} = h_{0,0}$; $b_{n,i} = h_{n,2i} - h_{n,2i+1}, n = 1, 2, \cdots, 0 \leq i < 2^{n-1}$; and define $H: I_1 \rightarrow L_\infty(\Delta, \mu)$ by $H(t_{n,i}) = t_{0,0} b_{0,0} + \Sigma_{n=1}^{\infty} \Sigma_{i=0}^{2^{n-1}-1} t_{n,i} b_{n,i}$.

Theorem 4. Let X be a separable Banach space and Y a Banach space and $T: X \rightarrow Y$ such that $T^*(Y^*)$ is nonseparable. Then there exist operators $R: I_1 \rightarrow X$ and $S: Y \rightarrow L_\infty(\Delta, \mu)$ such that $STR = H$, where H is the operator given above.

Proof. Since $T^*(Y^*)$ is nonseparable, $\{T^*y^* : \|y^*\| \leq 1\}$ is a non-norm-separable, weak* compact subset of X^*. By Corollary 1, there exist a subset $\Delta \subseteq \{T^*y^* : \|y^*\| \leq 1\}$, Δ weak* homeomorphic to the Cantor set, a Haar system $\{h_{n,i}\}$ on Δ, a sequence $\{x_{n,i}\} \subseteq X$, a constant $C > 0$ such that $\|x_{n,i}\| \leq C$, and $\Sigma_{n=0}^{\infty} \Sigma_{i=0}^{2^{n-1}-1} \|Ux_{n,i} - h_{n,i}\| < \epsilon < 1$ where U is the canonical evaluation operator. Define $\{b_{n,i}\}$ as above; $\{b_{n,i}\}$ is a Schauder basis for $C(\Delta)$. Define $g_{0,0} = Ux_{0,0}$, $g_{n,i} = U(x_{n,2i} - x_{n,2i+1}), n = 1, 2, \cdots, 0 \leq i < 2^{n-1}$. Since

$$\|g_{0,0} - b_{0,0}\| + \sum_{n=1}^{\infty} \sum_{i=0}^{2^{n-1}-1} \|g_{n,i} - b_{n,i}\| < \epsilon < 1$$
the Paley-Wiener stability theorem [12] shows the existence of an operator
\[A : C(\Delta) \to C(\Delta), \]
such that \(A \) is an onto isomorphism, \(\|A\| < 1 + \epsilon, \|A^{-1}\| < 1/(1 - \epsilon), \) and \(A g_{n,i} = b_{n,i} \). We have the following relations:

\[
\{A^n \eta : \|\eta\| \leq 1\} \subseteq \{\nu : \|\nu\| \leq (1 + \epsilon)/(1 - \epsilon)\}
\]

and

\[
\{U^*A^n \eta : \|\eta\| \leq 1\} \subseteq \{U^*\nu : \|\nu\| \leq (1 + \epsilon)/(1 - \epsilon)\}
\] \subseteq \{T^*y : \|y\| \leq (1 + \epsilon)/(1 - \epsilon)\}.
\]

Since \(AU \) has dense range, \(U^*A^* \) is one-to-one. Let \(\Delta_1 = \{U^*A^*\delta_k : \delta_k \) a positive point mass in \(C(\Delta)^*\} \) and let \(K = \{y^* \in Y^* : \|y^*\| \leq (1 + \epsilon)/(1 - \epsilon)\} \). Choose \(T^*y^* \) in \(\Delta_1 \). Since \(K \) is a weak* compact subset of \(Y^* \) the canonical evaluation operator \(V : Y \to C(K) \) is well defined. Let \(Q : C(\Delta) \to C(K) \) be the operator such that \((Qf)y^* = f(k) \) where \(T^*y^* = U^*A^*(\delta_k) ; Q \) is an isometry of \(C(\Delta) \) into \(C(K) \) and \(QAU = VT \). Let \(I : C(\Delta) \to L_{\infty}(\Delta, \mu) \) denote the canonical operator. Since \(Q \) is an isometry and \(L_{\infty}(\Delta, \mu) \) is injective [2, pp. 94–95] there exists an operator \(\tilde{T} : C(K) \to L_{\infty}(\Delta, \mu) \) such that \(\tilde{T}Q = I \). Define \(R : l_1 \to X \) by

\[
R((t_{n,i})) = t_{0,0}x_{0,0} + \sum_{n=1}^{\infty} \sum_{i=0}^{2^{n-1}-1} t_{n,i}(x_{n,2i} - x_{n,2i+1}).
\]

Combining the facts above we have that \(\|R\| \leq 2C, IAUR = H, \) and \((\tilde{T}V)TR = \tilde{T}(VT)R = \tilde{T}(QAU)R = IAUR = H. \) If we let \(S = \tilde{T}V \) then we have the desired result.

Corollary 3. Let \(X \) be a separable Banach space such that \(X^* \) is not separable. Then \(X \) has a bounded biorthogonal set of the cardinality of the continuum.

Proof. By Theorem 1, for \(\epsilon > 0 \), there exist a subset \(\Delta \) of the unit sphere of \(X^* \), \(\Delta \) weak* homeomorphic to the Cantor set, a Haar system \(\{h_{n,i}\} \) on the Cantor set, and a sequence \(\{x_{n,i}\} \subseteq X, \|x_{n,i}\| < 1 + \epsilon \) and

\[
\sum_{n=0}^{\infty} \sum_{i=0}^{2^n-1} \|Tx_{n,i} - h_{n,i}\| < \epsilon
\]

where \(T \) is the canonical evaluation operator. Let \(x^* \in \Delta \). Choose the unique sequence \((n, i_n) \) such that \(h_{n,i_n}(x^*) = 1, n = 0, 1, \cdots \). Let \(x^{**} \) be any weak* cluster point in \(X^{**} \) of the sequence \(\{x_{n,i_n}\}, \|x^{**}\| < 1 + \epsilon. \) Since

\[
\sum_{n=0}^{\infty} |x^*(x_{n,i_n}) - 1| < \epsilon,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
the sequence \(x^*(x_{n,i}) \) converges to 1, but also clusters at \(x^{**}(x^*) \) so \(x^{**}(x^*) = 1 \). For any \(y^* \in \Delta, y^* \neq x^* \),

\[
\sum_{n=0}^{\infty} |y^*(x_{n,i}) - h_{n,i}(y^*)| < \epsilon,
\]

but there exists a positive integer \(N \) such that for \(n \geq N, h_{n,i}(y^*) = 0 \), so \(\sum_{n=0}^{\infty} |y^*(x_{n,i})| < \epsilon \). Thus \(y^*(x_{n,i}) \) converges to 0, but also clusters at \(x^{**}(y^*) \) so \(x^{**}(y^*) = 0 \). Thus for each \(x^* \in \Delta \), there exists an \(x^{**} \in X^{**} \), \(\|x^{**}\| < 1 + \epsilon \), such that \(x^{**}(x^*) = 1 \) and \(x^{**}(y^*) = 0 \) for all \(y^* \in \Delta \), \(y^* \neq x^* \). Thus \(\{(x^*, x^{**}) \in \Delta \} \) is a biorthogonal system of the cardinality of the continuum.

Corollary 4. Let \(X \) be a separable Banach space. A necessary and sufficient condition that \(X^* \) be nonseparable is that there exists a bounded biorthogonal sequence \(\{(x_i^*, x_i^{**})\} \) in \(X^* \) such that \(\{x_i^*\} \) is dense in itself in the weak* topology.

Proof. If \(X^* \) is nonseparable, by Corollary 3, there exists a bounded biorthogonal system \(\{(x^*, x^{**})\} \) such that \(\{x^*\} \) is weak* homeomorphic to the Cantor set. Thus we have only to choose a sequence \(\{x_i^*\} \) in \(\{x^*: x^* \in \Delta \} \) that is weak* dense in \(\Delta \).

If \(\{(x_i^*, x_i^{**})\} \) is such a biorthogonal system then the construction in Theorem 1 can be repeated with slight modifications to construct an operator \(T: X \to C(\Delta) \) such that \(T^*(C(\Delta)*) \) has nonseparable range.

Corollary 5. Let \(X \) be a Banach space such that for any bounded sequence \(\{x_i^*\} \) in \(X^* \), the weak* closure of \(\{x_i^*\} \) is norm separable. Then \(X^* \) has RNP.

Proof. If \(X^* \) does not have RNP then from Theorem 1, we know there exist an operator \(S: L_1(\Delta, \nu) \to X^* \) (\(\nu \) some nonatomic measure on the Cantor set \(\Delta \)) and a Haar system \(\{h_{n,i}\} \) on \(\Delta, \int h_{n,i}d\nu = 2^{-n} \) such that \(S(2^n h_{n,i}) \) does not have separable weak* closure.

We point out that the converse of Corollary 5 is false. Precisely, there exists a compact Hausdorff space \(K \) such that \(K \) is separable, uncountable, and has no perfect subsets. Since \(C(K)^* \) is isometric to \(l_1(K) \), \(C(K)^* \) has RNP [4] but if \(\{k_i\} \) is a dense sequence in \(K \), then the weak* closure of \(\{\delta_{k_i} \} \) in \(C(K)^* \) contains all \(\delta_k \) which is not a norm separable set.

To obtain such a space \(K \), let \((n, i) = k_{n,i} \) be the sequence of pairs of integers for \(n = 0, 1, 2, \cdots, 0 \leq i < 2^n \) and let \(k \) be any sequence of the form \((n, i_n), n = 0, 1, \cdots, \), with \(2i_n \leq i_{n+1} < 2(i_n + 1) \). The set of \(\{k\} \) is uncountable. Define the topology on \(\{k_{n,i}, k \} \) to be the following:
(1) each \(\{k_{n,i}\} \) is an open set;
(2) a neighborhood basis of each \(k = \{(n, i_n)\} \) is given by \(U_N = \{k, k_{n,i_n} : n \geq N\} \) for each \(N = 0, 1, 2, \cdots \).

It is easy to see that \(\{k, k_{n,i}\} \) is a locally compact Hausdorff space, so we let \(K \) be the one-point compactification of this space.

For reference we state the following result.

Corollary 6.

(1) If \(X^* \) has RNP and \(Y \) is isomorphic to a subspace of a quotient space of \(X \), then \(Y^* \) has RNP.

(2) If there is a subspace \(Y \) of \(X \) such that \(Y^* \) and \([X/Y]^* \) have RNP then \(X^* \) has RNP.

Proof. Since (1) is obvious we shall prove only (2). Suppose \(Q : X \to X/Y \) is the canonical quotient operator. Let \(Z \) be a separable subspace of \(X \). Since \(Q \) is onto there exists a separable subspace \(W \) of \(X \), \(Z \subseteq W \) and \(Q(W) \) is closed in \(X/Y \). Let \(T : W \to Q(W) \), \(T = Q|_W \). The kernel of the operator \(T \) is \(W \cap Y \). Both \(Q(W) \) and \(W \cap Y \) are separable and their duals have RNP so their duals are separable. From this it is clear that \(W^* \) is separable so \(Z^* \) is separable. Thus \(X^* \) has RNP.

Finally, we state a tensor product formulation of Theorem 2 (see [6]).

Corollary 7. Let \(X \) be a Banach space. For \(X^* \) to have RNP it is necessary and sufficient that for every Banach space \(Y \), the natural operator from \(X^* \hat{\otimes} Y^* \) to \([X \hat{\otimes} Y]^*\) is onto.

Questions. Related to Theorem C and our Theorem 2 is the following question: if \(X \) does not have RNP do there exist a bounded sequence \(\{x_i\} \) in \(X \) and a \(\delta > 0 \) such that \(\|x_i - x_j\| \geq \delta \) for all \(i, j \) with \(i \neq j \) and for each \(i \) there exists \(j, k \neq i \neq k \), such that \(x_i = \frac{1}{2}(x_j + x_k) \)? By Theorem C, if such a sequence exists then \(X \) does not have RNP. Our Theorem 2 shows there is such a sequence in conjugate spaces not having RNP.

Related to Corollary 5 is the following question: if the set of extreme points of the unit ball of \(X^* \) is a norm separable set, is \(X^* \) separable?

If \(X \) has RNP does every separable subspace of \(X \) embed in a separable conjugate space? This is a problem posed by Uhl [15].

Probably the best known question about a separable Banach space \(X \) with \(X^* \) nonseparable is the following: Does \(X \) have a subspace isomorphic to \(l_1 \) (the space of all absolutely summing sequences)? Since the preparation of this paper R. C. James [7] has shown that the answer to this question is negative. In fact, James' example seems to indicate that the construction in our Theorem 1 is the best possible.
REFERENCES

7. R. C. James, A conjecture about l_1 subspaces (to appear).

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAMTON, NEW YORK 13901