Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Radon-Nikodym property in conjugate Banach spaces


Author: Charles Stegall
Journal: Trans. Amer. Math. Soc. 206 (1975), 213-223
MSC: Primary 28A45; Secondary 46B99, 46G10
DOI: https://doi.org/10.1090/S0002-9947-1975-0374381-1
MathSciNet review: 0374381
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize conjugate Banach spaces $ {X^\ast }$ having the Radon-Nikodym Property as those spaces such that any separable subspace of $ X$ has a separable conjugate. Several applications are given.


References [Enhancements On Off] (What's this?)

  • [1] W. J. Davis and R. R. Phelps, The Radon-Nikodym property and dentable sets in Banach spaces (to appear).
  • [2] M. M. Day, Normed linear spaces, 2nd printing, Ergebnesse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
  • [3] J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 1611-1620. MR 0333728 (48:12052)
  • [4] N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392. MR 1, 338. MR 0002020 (1:338b)
  • [5] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math.,vol. 7, Interscience, New York and London, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [6] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [7] R. C. James, A conjecture about $ {l_1}$ subspaces (to appear).
  • [8] E. B. Leach and J. H. M. Whitfield, Differentiable functions and rough norms on Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120-126. MR 45 #2471. MR 0293394 (45:2471)
  • [9] D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $ {l_1}(I)$, J. Functional Analysis 12 (1973), 177-187. MR 0342987 (49:7731)
  • [10] H. Maynard, A geometric characterization of Banach spaces possessing the Radon-Nikodym theorem (to appear).
  • [11] R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), 108-136. MR 4, 218. MR 0007938 (4:218f)
  • [12] J. R. Retherford, Basic sequences and the Paley-Wiener criterion, Pacific J. Math. 14 (1964), 1019-1027. MR 30 #434. MR 0170195 (30:434)
  • [13] M. A. Rieffel, Dentable subsets of Banach spaces, with application to a Radon-Nikodym theorem, Functional Analysis (B. R. Gelbaum, editor), (Proc. Conf., Irvine, Calif., 1966), Academic Press, New York; Thompson Book, Washington, D. C., 1967, pp. 71-77. MR 36 #5668. MR 0222618 (36:5668)
  • [14] -, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466-487. MR 36 #5297. MR 0222245 (36:5297)
  • [15] J. J. Uhl, Jr., A note on the Radon-Nikodym property for Banach spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 113-115. MR 0482100 (58:2187)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A45, 46B99, 46G10

Retrieve articles in all journals with MSC: 28A45, 46B99, 46G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0374381-1
Keywords: Radon-Nikodym Property, conjugate Banach spaces
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society