Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function

Author:
K. Michael Day

Journal:
Trans. Amer. Math. Soc. **206** (1975), 224-245

MSC:
Primary 30A08; Secondary 45E10

MathSciNet review:
0379803

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the finite Toeplitz matrices generated by the Laurent expansion of an arbitrary rational function. An identity is developed for which may be used to prove that the limit set of the eigenvalues of the is a point or consists of a finite number of analytic arcs.

**[1]**Glen Baxter and Palle Schmidt,*Determinants of a certain class of non-Hermitian Toeplitz matrices.*, Math. Scand.**9**(1961), 122–128. MR**0126653****[2]**Einar Hille,*Analytic function theory. Vol. II*, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR**0201608****[3]**I. I. Hirschman Jr.,*The spectra of certain Toeplitz matrices*, Illinois J. Math.**11**(1967), 145–159. MR**0205070****[4]**Palle Schmidt and Frank Spitzer,*The Toeplitz matrices of an arbitrary Laurent polynomial*, Math. Scand.**8**(1960), 15–38. MR**0124665****[5]**J. L. Ullman,*A problem of Schmidt and Spitzer*, Bull. Amer. Math. Soc.**73**(1967), 883–885. MR**0219986**, 10.1090/S0002-9904-1967-11826-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A08,
45E10

Retrieve articles in all journals with MSC: 30A08, 45E10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1975-0379803-8

Keywords:
Toeplitz matrices,
Laurent series,
rational functions

Article copyright:
© Copyright 1975
American Mathematical Society