Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Holomorphic functions with growth conditions


Author: Bent E. Petersen
Journal: Trans. Amer. Math. Soc. 206 (1975), 395-406
MSC: Primary 32A10; Secondary 35E05
DOI: https://doi.org/10.1090/S0002-9947-1975-0379879-8
MathSciNet review: 0379879
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a $ p \times q$ matrix of polynomials in $ n$ complex variables. If $ \Omega $ is a domain of holomorphy in $ {{\mathbf{C}}^n}$ and $ u$ is a $ q$-tuple of holomorphic functions we show that the equation $ Pv = Pu$ has a solution $ v$ which is a holomorphic $ q$-tuple in $ \Omega $ and which satisfies an $ {L^2}$ estimate in terms of $ Pu$. Similar results have been obtained by Y.-T. Siu and R. Narasimhan for bounded domains and by L. Höormander for the case $ \Omega = {{\mathbf{C}}^n}$.


References [Enhancements On Off] (What's this?)

  • [1] L. Hörmander, $ {L^2}$ estimates and existence theorems for the $ \bar \partial $ operator, Acta Math. 113 (1965), 89-152. MR 31 #3691. MR 0179443 (31:3691)
  • [2] -, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 34 #2933. MR 0203075 (34:2933)
  • [3] S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 0156879 (28:122)
  • [4] R. Narasimhan, Cohomology with bounds on complex spaces, Several Complex Variables, I (Proc. Conf. Univ. of Maryland, College Park, Md., 1970), Lecture Notes in Math., vol. 155, Springer-Verlag, Berlin and New York, 1970, pp. 141-150. MR 43 #5059. MR 0279337 (43:5059)
  • [5] B. E. Petersen, On the Laplace transform of a temperate distribution supported by a cone, Proc. Amer. Math. Soc. 35 (1972), 123-128. MR 45 #7466. MR 0298414 (45:7466)
  • [6] Y.-T. Siu, Holomorphic functions of polynomial growth on bounded domains, Duke Math. J. 37 (1970), 77-84. MR 40 #4475. MR 0251244 (40:4475)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., no. 30, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [8] R. G. Swan, Algebraic $ K$-theory, Lecture Notes in Math., no. 76, Springer-Verlag, Berlin and New York, 1968. MR 39 #6940. MR 0245634 (39:6940)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32A10, 35E05

Retrieve articles in all journals with MSC: 32A10, 35E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0379879-8
Keywords: Holomorphic functions, cohomology with bounds
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society