Quantum logic and the locally convex spaces

Author:
W. John Wilbur

Journal:
Trans. Amer. Math. Soc. **207** (1975), 343-360

MSC:
Primary 46A05; Secondary 81.02

DOI:
https://doi.org/10.1090/S0002-9947-1975-0367607-1

MathSciNet review:
0367607

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An important theorem of Kakutani and Mackey characterizes an infinite dimensional real (complex) Hilbert space as an infinite dimensional real (complex) Banach space whose lattice of closed subspaces admits an orthocomplementation. This result, also valid for quaternionic spaces, has proved useful as a justification for the unique role of Hilbert space in quantum theory. With a like application in mind, we present in the present paper a number of characterizations of real and complex Hilbert space in the class of locally convex spaces. One of these is an extension of the Kakutani-Mackey result from the infinite dimensional Banach spaces to the class of all infinite dimensional complete Mackey spaces. The implications for the foundations of quantum theory are discussed.

**[1]**B. H. Arnold,*Rings of operators on vector spaces*, Ann. of Math. (2)**45**(1944), 24-49. MR**5**, 147. MR**0009425 (5:147c)****[2]**G. Bachman and L. Narici,*Functional analysis*, Academic Press, New York, 1966. MR**36**#638. MR**0217549 (36:638)****[3]**G. Birkhoff and J. von Neumann,*The logic of quantum mechnics*, Ann. of Math.**37**(1936), 823-843. MR**1503312****[4]**A. M. Gleason,*Measures on the closed subspaces of a Hilbert space*, J. Math. Mech.**6**(1957), 885-893. MR**20**#2609. MR**0096113 (20:2609)****[5]**J. Jauch,*Foundations of quantum mechanics*, Addison-Wesley, Reading, Mass., 1968. MR**36**#1151. MR**0218062 (36:1151)****[6]**S. Kakutani and G. W. Mackey,*Two characterizations of real Hilbert space*, Ann. of Math. (2)**45**(1944), 50-58. MR**5**, 146. MR**0009421 (5:146g)****[7]**-,*Ring and lattice characterizations of complex Hilbert space*, Bull. Amer. Math. Soc.**52**(1946), 727-733. MR**8**, 31. MR**0016534 (8:31e)****[8]**G. W. Mackey,*The mathematical foundations of quantum mechanics: A lecturenote volume*, Benjamin, New York, 1963. MR**27**#5501.**[9]**H. Schaefer,*Topological vector spaces*, Macmillan, New York, 1966. MR**33**#1689. MR**0193469 (33:1689)****[10]**R. Solovay,*The measure problem*, Notices Amer. Math. Soc.**12**(1965),**217**, Abstract #65T-62.**[11]**V. S. Varadarajan,*Geometry of quantum theory*. Vol. 1, Van Nostrand, Princeton, N. J., 1968. MR**0471674 (57:11399)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46A05,
81.02

Retrieve articles in all journals with MSC: 46A05, 81.02

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0367607-1

Keywords:
Quantum logic,
projective logic,
state,
question lattice,
lattice of closed subspaces,
orthocomplementation,
-bilinear symmetric form,
continuous automorphism,
discontinuous automorphism,
-bilinear space,
Hilbertian space,
inner product space,
Hilbert space,
metrizable space,
Mackey space

Article copyright:
© Copyright 1975
American Mathematical Society