Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $ C\sp{n}$ with smooth boundary


Author: Ian Graham
Journal: Trans. Amer. Math. Soc. 207 (1975), 219-240
MSC: Primary 32F99; Secondary 32F15, 32H15
DOI: https://doi.org/10.1090/S0002-9947-1975-0372252-8
MathSciNet review: 0372252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Carathéodory and Kobayashi distance functions on a bounded domain $ G$ in $ {{\mathbf{C}}^n}$ have related infinitesimal forms. These are the Carathéodory and Kobayashi metrics. They are denoted by $ F(z,\xi )$ (length of the tangent vector $ \xi $ at the point $ z$). They are defined in terms of holomorphic mappings, from $ G$ to the unit disk for the Carathéodory metric, and from the unit disk to $ G$ for the Kobayashi metric.

We consider the boundary behavior of these metrics on strongly pseudoconvex domains in $ {{\mathbf{C}}^n}$ with $ {C^2}$ boundary. $ \xi $ is fixed and $ z$ is allowed to approach a boundary point $ {z_0}$. The quantity $ F(z,\xi )d(z,\partial G)$ is shown to have a finite limit. In addition, if $ \xi $ belongs to the complex tangent space to the boundary at $ {z_0}$, then this first limit is zero, and $ {(F(z,\xi ))^2}d(z,\partial G)$ has a (nontangential) limit in which the Levi form appears.

We prove an approximation theorem for bounded holomorphic functions which uses peak functions in a novel way. The proof was suggested by N. Kerzman. This theorem is used here in studying the boundary behavior of the Carathéodory metric.


References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, Über die Ke nfunktion und ihr Verhalten am Rande. I, II, J. Reine Angew. Math. 169 (1933), 1-42 ibid. 172 (1935), 89-128.
  • [2] C. Carathéodory, Über das Schwarze Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
  • [3] -, Über die Geometrie der analytischen Abbildungen, die durch analytische Funktionen von zwei Veränderlichen vermittelt werden, Abh. Math. Sem. Univ. Hamburg 6 (1928), 97-145.
  • [4] K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), 9-36. MR 41 #7149. MR 0262543 (41:7149)
  • [5] -, Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten Univ. of Münster, 1972 (unpublished notes).
  • [6] C. Fefferman, On the Bergman kernel and biholomorphic mappings of pseudoconvex domains, Bull. Amer. Math. Soc. 80 (1974), 667-669. MR 0338454 (49:3218)
  • [7] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $ {{\mathbf{C}}^n}$ with smooth boundary, Thesis, Princeton University, Princeton, N. J., 1973.
  • [8] -, Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in $ {{\mathbf{C}}^n}$ with smooth boundary, Bull. Amer. Math. Soc. 79 (1973), 749-751. MR 0324076 (48:2428)
  • [9] H. Grauert and I. Lieb, Das Ramirezsche Integral und die Lösung die Gleichung $ \bar \partial f = \alpha $ im Bereich der beschränkten Formen, Complex Analysis (Proc. Conf., Rice Univ., Houston, Tex., 1969), Rice Univ. Studies 56 (1970), no. 2, 29-50 (1971). MR 42 #7938. MR 0273057 (42:7938)
  • [10] H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108-125. MR 33 #2827. MR 0194617 (33:2827)
  • [11] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [12] G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR Sb. 7 (1969), 597-616. MR 40 #2902. MR 0249660 (40:2902)
  • [13] -, Integral representation of functions in strongly pseudoconvex regions and applications to the $ \bar \partial $-problem, Mat. Sb. 82 (124) (1970), 300-308 = Math. USSR Sb. 11 (1970), 273-281. MR 42 #534. MR 0265625 (42:534)
  • [14] -, Analytic polyhedra are not analytically equivalent to strongly pseudoconvex domains, Dokl. Akad. Nauk SSSR (to appear) (Russian).
  • [15] L. Hörmander, $ {L^2}$ estimates and existence theorems for the $ \bar \partial $ operator, Acta Math. 113 (1965), 89-152. MR 31 #3691. MR 0179443 (31:3691)
  • [16] N. L. Kerzman, Taut manifolds and domains of holomorphy in $ {{\mathbf{C}}^n}$, Notices Amer. Math. Soc. 16 (1969), 675-676.
  • [17] -, Hölder and $ {L^p}$ estimates for solutions of $ \bar \partial u = f$ in strongly pseudoconvex domains, Comm. Pure. Appl. Math. 24 (1971), 301-379. MR 43 #7658. MR 0281944 (43:7658)
  • [18] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., 2, Marcel Dekker, New York, 1970. MR 43 #3503. MR 0277770 (43:3503)
  • [19] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid. (2) 79 (1964), 450-472. MR 27 #2999; 34 #8010. MR 0153030 (27:2999)
  • [20] N. Ovrelid, Integral representation formulas and $ {L^p}$-estimates for the $ \bar \partial $-equation, Math. Scand. 29 (1971), 137-160. MR 0324073 (48:2425)
  • [21] H. J. Reiffen, Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathéodory, Schr. Math. Inst. Univ. Münster, No. 26 (1963). MR 28 #1320. MR 0158093 (28:1320)
  • [22] H. L. Royden, Remarks on the Kobayashi metric, Several Complex Variables, II (Proc. Internat. Conf., Univ. of Maryland, College Park, Md., 1970), Lecture Notes in Math., vol. 185, Springer-Verlag, Berlin and New York, 1971. MR 46 #3826. MR 0304694 (46:3826)
  • [23] E. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, Princeton Univ. Press, Princeton, N. J., 1972. MR 0473215 (57:12890)
  • [24] N. Vormoor, Topologische Fortsetzung biholomorphen Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im $ {{\mathbf{C}}^n}$ mit $ {C^\infty }$-Rand, Math. Ann. 204 (1973), 239-261. MR 0367298 (51:3540)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F99, 32F15, 32H15

Retrieve articles in all journals with MSC: 32F99, 32F15, 32H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0372252-8
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society