Finitary imbeddings of certain generalized sample spaces
Authors:
Marie A. Gaudard and Robert J. Weaver
Journal:
Trans. Amer. Math. Soc. 207 (1975), 293307
MSC:
Primary 81.06
MathSciNet review:
0373474
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A generalized sample space each of whose subspaces has as its logic an orthomodular poset is called an HD sample space. In this paper it is shown that any HD sample space may be imbedded in a natural way in a generalized sample space which is HD and at the same time admits a full set of dispersion free weight functions.
 [1]
Garrett
Birkhoff, Lattice theory, Third edition. American Mathematical
Society Colloquium Publications, Vol. XXV, American Mathematical Society,
Providence, R.I., 1967. MR 0227053
(37 #2638)
 [2]
J.
C. Dacey, Orthomodular spaces and additive measurement,
Caribbean J. Sci. Math. 1 (1969), no. 2, 51–67.
MR
0376468 (51 #12643)
 [3]
D.
J. Foulis and C.
H. Randall, Operational statistics. I. Basic concepts, J.
Mathematical Phys. 13 (1972), 1667–1675. MR 0416417
(54 #4491)
 [4]
M. A. Gaudard, Maximal refinement ideals and atomicity in certain generalized sample spaces (in preparation).
 [5]
R.
J. Greechie, Orthomodular lattices admitting no states, J.
Combinatorial Theory Ser. A 10 (1971), 119–132. MR 0274355
(43 #120)
 [6]
A.
Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung,
SpringerVerlag, BerlinNew York, 1977 (German). Reprint of the 1933
original. MR
0494348 (58 #13242)
 [7]
G. W. Mackey, The mathematical foundations of quantum mechanics: A lecturenote volume. Benjamin, New York, 1963. MR 27 #5501.
 [8]
C.
H. Randall and D.
J. Foulis, An approach to empirical logic, Amer. Math. Monthly
77 (1970), 363–374. MR 0258688
(41 #3334)
 [9]
D.
J. Foulis and C.
H. Randall, Lexicographic orthogonality, J. Combinatorial
Theory Ser. A 11 (1971), 157–162. MR 0280420
(43 #6140)
 [10]
C.
H. Randall and D.
J. Foulis, Operational statistics. II. Manuals of operations and
their logics, J. Mathematical Phys. 14 (1973),
1472–1480. MR 0416418
(54 #4492)
 [11]
Robert
J. Weaver, Admissible operations on sample spaces over the free
orthogonality monoid, Colloq. Math. 25 (1972),
319–324. MR 0326788
(48 #5131)
 [12]
Robert
J. Weaver, Closed sets in the free orthogonality monoid, Amer.
J. Math. 96 (1974), 593–601. MR 0364043
(51 #298)
 [13]
Robert
J. Weaver, Refinement conditions on operations in sample
spaces, Canad. J. Math. 27 (1975), no. 5,
991–999. MR 0395620
(52 #16414)
 [1]
 G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
 [2]
 J. C. Dacey, Orthomodular spaces and additive measurement, Caribbean J. Sci. Math. 1 (1969), 5166. MR 0376468 (51:12643)
 [3]
 D. J. Foulis and C. H. Randall, Operational statistics. I: Basic concepts, J. Mathematical Phys. 13 (1972), 16671675. MR 0416417 (54:4491)
 [4]
 M. A. Gaudard, Maximal refinement ideals and atomicity in certain generalized sample spaces (in preparation).
 [5]
 R. J. Greechie, Orthomodular lattices admitting no states, J. Combinatorial Theory Ser. A 10 (1971), 119132. MR 43 #120. MR 0274355 (43:120)
 [6]
 A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1933; English transl., Foundations of the theory of probability, 2nd ed., Chelsea, New York, 1956. MR 11, 374; 18, 155. MR 0494348 (58:13242)
 [7]
 G. W. Mackey, The mathematical foundations of quantum mechanics: A lecturenote volume. Benjamin, New York, 1963. MR 27 #5501.
 [8]
 C. H. Randall and D. J. Foulis, An approach to empirical logic, Amer. Math. Monthly 77 (1970), 363374. MR 41 #3334. MR 0258688 (41:3334)
 [9]
 , Lexicographic orthogonality, J. Combinatorial Theory Ser. A 11 (1971), 157162. MR 43 #6140. MR 0280420 (43:6140)
 [10]
 , Operational statistics. II: Manuals of operations and their logics, J. Mathematical Phys. 14 (1973), 14721480. MR 0416418 (54:4492)
 [11]
 R. J. Weaver, Admissible operations on sample spaces over the free orthogonality monoid, Colloq. Math 25 (1972), 319324. MR 0326788 (48:5131)
 [12]
 , Closed sets in the free orthogonality monoid, Amer. J. Math. 96 (1974), 593601. MR 0364043 (51:298)
 [13]
 , Refinement conditions on operations in sample spaces, Canad. J. Math. (to appear). MR 0395620 (52:16414)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
81.06
Retrieve articles in all journals
with MSC:
81.06
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503734742
PII:
S 00029947(1975)03734742
Keywords:
Empirical logic,
generalized sample space,
HD sample space,
logic,
complete orthomodular lattice,
operation,
orthogonal set,
scattered set,
finitary sample space,
idealized point
Article copyright:
© Copyright 1975
American Mathematical Society
