Functions of vanishing mean oscillation
Author:
Donald Sarason
Journal:
Trans. Amer. Math. Soc. 207 (1975), 391405
MSC:
Primary 46J10; Secondary 30A78, 42A40, 60G10
MathSciNet review:
0377518
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A function of bounded mean oscillation is said to have vanishing mean oscillation if, roughly speaking, its mean oscillation is locally small, in a uniform sense. In the present paper the class of functions of vanishing mean oscillation is characterized in several ways. This class is then applied to answer two questions in analysis, one involving stationary stochastic processes satisfying the strong mixing condition, the other involving the algebra .
 [1]
Ralph
Philip Boas Jr., Entire functions, Academic Press Inc., New
York, 1954. MR
0068627 (16,914f)
 [2]
Kevin
Clancey and Wayne
Cutrer, Subalgebras of Douglas
algebras, Proc. Amer. Math. Soc. 40 (1973), 102–106. MR 0318895
(47 #7441), http://dx.doi.org/10.1090/S00029939197303188952
 [3]
Peter
L. Duren, Smirnov domains and conjugate functions, J.
Approximation Theory 5 (1972), 393–400. Collection
of articles dedicated to J. L. Walsh on his 75th birthday, IV (Proc.
Internat. Conf. Approximation Theory, Related Topics and their
Applications, Univ. Maryland, College Park, Md., 1970). MR 0346159
(49 #10885)
 [4]
C.
Fefferman and E.
M. Stein, 𝐻^{𝑝} spaces of several variables,
Acta Math. 129 (1972), no. 34, 137–193. MR 0447953
(56 #6263)
 [5]
Irving
Glicksberg, Measures orthogonal to algebras and
sets of antisymmetry, Trans. Amer. Math.
Soc. 105 (1962),
415–435. MR 0173957
(30 #4164), http://dx.doi.org/10.1090/S00029947196201739575
 [6]
Henry
Helson and Donald
Sarason, Past and future, Math. Scand 21
(1967), 5–16 (1968). MR 0236989
(38 #5282)
 [7]
Kenneth
Hoffman, Banach spaces of analytic functions, PrenticeHall
Series in Modern Analysis, PrenticeHall, Inc., Englewood Cliffs, N. J.,
1962. MR
0133008 (24 #A2844)
 [8]
Richard
Hunt, Benjamin
Muckenhoupt, and Richard
Wheeden, Weighted norm inequalities for the
conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 0312139
(47 #701), http://dx.doi.org/10.1090/S00029947197303121398
 [9]
I.
A. Ibragimov, On the spectrum of stationary Gaussian sequences
satisfying a strong mixing condition. I. Necessary conditions, Teor.
Verojatnost. i Primenen 10 (1965), 95–116 (Russian,
with English summary). MR 0174091
(30 #4298)
 [10]
F.
John and L.
Nirenberg, On functions of bounded mean oscillation, Comm.
Pure Appl. Math. 14 (1961), 415–426. MR 0131498
(24 #A1348)
 [11]
Yitzhak
Katznelson, An introduction to harmonic analysis, John Wiley
& Sons, Inc., New YorkLondonSydney, 1968. MR 0248482
(40 #1734)
 [12]
Donald
Sarason, An addendum to: “Past and future” (Math.
Scand. 21 (1967), 5–16 (1968)) by H. Helson and D. Sarason,
Math. Scand. 30 (1972), 62–64. MR 0385990
(52 #6849)
 [13]
Donald
Sarason, On products of Toeplitz operators, Acta Sci. Math.
(Szeged) 35 (1973), 7–12. MR 0331109
(48 #9443)
 [14]
Donald
Sarason, Algebras of functions on the unit
circle, Bull. Amer. Math. Soc. 79 (1973), 286–299. MR 0324425
(48 #2777), http://dx.doi.org/10.1090/S000299041973131441
 [15]
David
A. Stegenga, Bounded Toeplitz operators on 𝐻¹ and
applications of the duality between 𝐻¹ and the functions of
bounded mean oscillation, Amer. J. Math. 98 (1976),
no. 3, 573–589. MR 0420326
(54 #8340)
 [16]
A.
M. Yaglom, Stationary Gaussian processes satisfying the strong
mixing condition and best predictable functionals, Proc. Internat.
Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif., 1963,
SpringerVerlag, New York, 1965, pp. 241–252. MR 0195158
(33 #3361)
 [1]
 R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 16, 914. MR 0068627 (16:914f)
 [2]
 K. F. Clancey and W. Cutrer, Subalgebras of Douglas algebras, Proc. Amer. Math. Soc. 40 (1973), 102106. MR 47 #7441. MR 0318895 (47:7441)
 [3]
 P. Duren, Smirnov domains and conjugate functions, J. Approximation Theory 5 (1972), 393400. MR 0346159 (49:10885)
 [4]
 C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137193. MR 0447953 (56:6263)
 [5]
 I. L. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415435. MR 30 #4164. MR 0173957 (30:4164)
 [6]
 H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 516 (1968). MR 38 #5282. MR 0236989 (38:5282)
 [7]
 K. Hoffman, Banach spaces of analytic functions, PrenticeHall Ser. in Modern Analysis, PrenticeHall, Englewood Cliffs, N. J., 1962. MR 24 #A2844. MR 0133008 (24:A2844)
 [8]
 R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227251. MR 47 #701. MR 0312139 (47:701)
 [9]
 I. A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying a strong mixing condition. I: Necessary conditions, Teor. Verojatnost. i Primenen. 10 (1965), 95116 = Theor. Probability Appl. 10 (1965), 85106. MR 30 #4298. MR 0174091 (30:4298)
 [10]
 F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415426. MR 24 #A1348. MR 0131498 (24:A1348)
 [11]
 Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734. MR 0248482 (40:1734)
 [12]
 D. Sarason, An addendum to ``Past and future", Math. Scand. 30 (1972), 6264. MR 0385990 (52:6849)
 [13]
 , On products of Toeplitz operators, Acta Sci. Math. (Szeged) 35 (1973), 712. MR 0331109 (48:9443)
 [14]
 , Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286299. MR 48 #2777. MR 0324425 (48:2777)
 [15]
 D. A. Stegenga, Bounded Toeplitz operators on and functions of bounded mean oscillation, Amer. J. Math. (to appear). MR 0420326 (54:8340)
 [16]
 A. M. Jaglom, Stationary Gaussian processes satisfying the strong mixing condition and best predictable functionals, Proc. Internat. Res. Sem., Statist. Lab., Univ. of California, Berkeley, Calif., 1963, SpringerVerlag, New York, 1965, pp. 241252. MR 33 #3361, MR 0195158 (33:3361)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46J10,
30A78,
42A40,
60G10
Retrieve articles in all journals
with MSC:
46J10,
30A78,
42A40,
60G10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503775183
PII:
S 00029947(1975)03775183
Article copyright:
© Copyright 1975
American Mathematical Society
