Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings


Authors: Y. S. Chow and T. L. Lai
Journal: Trans. Amer. Math. Soc. 208 (1975), 51-72
MSC: Primary 60G50
DOI: https://doi.org/10.1090/S0002-9947-1975-0380973-6
MathSciNet review: 0380973
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove certain one-sided Paley-type inequalities and use them to study the convergence rates for the tail probabilities of sample sums. We then apply our results to find the limiting moments and the limiting distribution of the last time and the largest excess of boundary crossings for the sample sums, generalizing the results previously obtained by Robbins, Siegmund and Wendel. Certain one-sided limit theorems for delayed sums are also obtained and are applied to study the convergence rates of tail probabilities.


References [Enhancements On Off] (What's this?)

  • [1] L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123. MR 33 #6679. MR 0198524 (33:6679)
  • [2] Y. S. Chow, Delayed sums and Borel summability for independent, identically distributed random variables, Bull. Inst. Math. Acad. Sinica 1 (1973), 207-220. MR 0343357 (49:8099)
  • [3] Y. S. Chow, H. Robbins and D. Siegmund, Great expectations: The theory of optimal stopping, Houghton-Mifflin, Boston, Mass., 1971. MR 0331675 (48:10007)
  • [4] J. L. Doob, Stochastic processes, Wiley, New York; Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [5] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291. MR 11, 40. MR 0030714 (11:40f)
  • [6] C. -G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945), 1-125. MR 7, 312. MR 0014626 (7:312a)
  • [7] P. Hartman and A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169-176. MR 2, 228. MR 0003497 (2:228h)
  • [8] C. S. Kao, On the time and the excess of linear boundary crossings of the sample sums, Ph.D. Thesis, Columbia University, New York, 1972.
  • [9] J. Kiefer and J. Wolfowitz, On the characteristics of the general queueing process, with applications to random walk, Ann. Math. Statist. 27 (1956), 147-161. MR 17, 980. MR 0077019 (17:980d)
  • [10] J. F. C. Kingman, Some inequalities for the queue $ GI/G/I$, Biometrika 49 (1962), 315-324. MR 33 #6720. MR 0198565 (33:6720)
  • [11] T. L. Lai, Limit theorems for delayed sums, Ann. Probability 2 (1974), 432-440. MR 0356193 (50:8664)
  • [12] M. Loève, Probability theory. Foundations. Random sequences, 3rd. ed., Van Nostrand, Princeton, N. J., 1963. MR 34 #3596. MR 0203748 (34:3596)
  • [13] J. Marcinkiewicz et A. Zygmund, Quelques théorèmes sur les fonctions indépendantes, Studia Math. 7 (1938), 104-120.
  • [14] H. Robbins and D. Siegmund, Boundary crossing probabilities for the Wiener process and sample sums, Ann. Math. Statist. 41 (1970), 1410-1429. MR 43 #2796. MR 0277059 (43:2796)
  • [15] H. Robbins, D. Siegmund and J. Wendel, The limiting distribution of the last time $ {S_n} \geqslant n\varepsilon $, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 1228-1230. MR 39 #4946. MR 0243625 (39:4946)
  • [16] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), 323-339. MR 18, 156. MR 0079851 (18:156e)
  • [17] A. Zygmund, Trigonometric series. Vols. 1, 2, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)
  • [18] L. Baum, On convergence to $ + \infty $ in the law of large numbers, Ann. Math. Statist. 34 (1963), 219-222. MR 26 #799. MR 0143240 (26:799)
  • [19] D. W. Müller, Verteilungs-Invarianzprinzipien für das starke Gesetz der grossen Zahl, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 173-192. MR 38 #753. MR 0232428 (38:753)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G50

Retrieve articles in all journals with MSC: 60G50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0380973-6
Keywords: Convergence rates, Paley-type inequalities, last time, largest excess, limiting distribution, limiting moments, delayed sums
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society