Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ a\sp*$-closures of lattice-ordered groups


Authors: Roger Bleier and Paul Conrad
Journal: Trans. Amer. Math. Soc. 209 (1975), 367-387
MSC: Primary 06A55
DOI: https://doi.org/10.1090/S0002-9947-1975-0404087-1
MathSciNet review: 0404087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A convex $ l$-subgroup of an $ l$-group $ G$ is closed if it contains the join of each of its subsets that has a join in $ G$. An extension of $ G$ which preserves the lattice of closed convex $ l$-subgroups of $ G$ is called an $ {a^ \ast }$-extension of $ G$. In this paper we consider $ {a^ \ast }$-extensions and $ {a^ \ast }$-closures of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [2] A. Bigard, Contribution a la théorie des groupes reticules, Thesis, University of Paris, 1969.
  • [3] R. Bleier, The SP-hull of a lattice-ordered group, Canad. J. Math. 26 (1974), 866-878. MR 0345891 (49:10621)
  • [4] R. Bleier and P. Conrad, The lattice of closed ideals and $ {a^ \ast }$-extensions of an abelian $ l$-group, Pacific J. Math. 47 (1973), 329-340. MR 0325486 (48:3833)
  • [5] J. Brewer, P. Conrad and P. Montgomery, Lattice-ordered groups and a conjecture for adequate domains, Proc. Amer. Math. Soc. 43 (1974), 31-35. MR 0332616 (48:10942)
  • [6] R. D. Byrd, Complete distributivity in lattice-ordered groups, Pacific J. Math. 26 (1967), 423-432. MR 34 #7680. MR 0207866 (34:7680)
  • [7] R. D. Byrd and J. T. Lloyd, Closed subgroups and complete distributivity in lattice-ordered groups, Math. Z. 101 (1967), 123-130. MR 36 #1371. MR 0218284 (36:1371)
  • [8] D. A. Chambless, Representation of the projectable and strongly projectable hulls of a lattice-ordered group, Proc. Amer. Math. Soc. 34 (1972), 346-350. MR 45 #5051. MR 0295990 (45:5051)
  • [9] P. F. Conrad, The essential closure of an Archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160. MR 43 #3190. MR 0277457 (43:3190)
  • [10] -, The hulls of representable $ l$-groups and $ f$-rings, J. Austral. Math. Soc. 16 (1973), 385-415. MR 0344173 (49:8913)
  • [11] -, Lattice-ordered groups, Tulane University, New Orleans, La., 1970.
  • [12] -, On ordered division rings, Proc. Amer. Math. Soc. 5 (1954), 323-328. MR 15, 849. MR 0061582 (15:849a)
  • [13] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, London; Addison-Wesley, Reading, Mass., 1963. MR 30 #2090. MR 0171864 (30:2090)
  • [14] A. Glass and W. C. Holland, $ {a^ \ast }$-closures of non-commutative lattice-ordered groups (preprint). MR 1036072 (91i:06017)
  • [15] S. Wolfenstein, Contribution à l'étude des groupes reticulés; extensions archimédiennes, groupes à valeurs normales, Thesis, University of Paris, 1970.
  • [16] R. Ball, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1974.
  • [17] W. C. Holland, Extensions of ordered groups and sequence completion, Trans. Amer. Math. Soc. 107 (1963), 71-82. MR 26 #3795. MR 0146273 (26:3795)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0404087-1
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society