Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On bilateral derivates and the derivative
HTML articles powered by AMS MathViewer

by K. M. Garg PDF
Trans. Amer. Math. Soc. 210 (1975), 295-329 Request permission

Abstract:

In this paper we prove a new result on the monotonicity of a function in terms of its bilateral derivates, and obtain from it extensions of several existing results on such derivates and the derivative of a function. Let $f:R \to R$, where $R$ denotes the set of real numbers. If its lower derivate $\underline {D} f > 0$ at a nonmeager set of points, we prove $f$ to be “adequately” increasing in some interval, viz. even the function $f(x) - \alpha x$ is increasing for some $\alpha > 0$. When $f$ is nowhere adequately monotone, it follows that there exists a residual set of points where $f$ has a zero “median” derivate, i.e. either $D\_f \leqslant 0 \leqslant {D^ - }f$ or ${D_ + }f \leqslant 0 \leqslant {D^ + }f$. These results remain valid for functions defined on an arbitrary set $X \subset R$ under a mild continuity hypothesis, e.g. the absence of ordinary discontinuity at the unilateral limit points of $X$. The last result leads to a new version of A. P. Morse’s theorem for median derivates, and this in turn yields an improved version of the Goldowski-Tonelli theorem. We also obtain some necessary and sufficient conditions for a function to be nondecreasing, and extensions of the mean-value theorem and the Denjoy and other properties of a derivative. If $f:X \to R$, where $X \subset R$, and both the derivates of $f$ are finite at a set of points that is not meager in $X$, then $f$ is further proved to satisfy the Lipschitz condition on some portion of $X$. When $f$ has a finite derivate almost everywhere and $X$ has a finite measure, it is shown that $f$ can be made Lipschitz by altering its values on a set with arbitrarily small measure. Some results on singular functions are also strengthened. The results and the methods of this paper further provide extensions of some results of Young, Tolstoff, Kronrod, Zahorski, Brudno, Fort, Hájek, Filipczak, Neugebauer and Lipiński on derivates and the derivability of a function.
References
  • A. M. Bruckner, An affirmative answer to a problem of Zahorski, and some consequences, Michigan Math. J. 13 (1966), 15–26. MR 188375, DOI 10.1307/mmj/1028999475
  • A. Brudno, Continuity and differentiability, Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 119–134 (Russian, with English summary). MR 0012321
  • Gustave Choquet, Application des propriétés descriptives de la fonction contingent à la théorie des fonctions de variable réelle et à la géométrie différentielle des variétés cartésiennes, J. Math. Pures Appl. (9) 26 (1947), 115–226 (1948) (French). MR 23897
  • J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124–125. MR 19712, DOI 10.1090/S0002-9904-1947-08757-7
  • A. Denjoy, Sur une propriété des fonctions dérivées, Enseignement Math. 18 (1916), 320-328.
  • F. M. Filipczak, On the derivative of a discontinuous function, Colloq. Math. 13 (1964), 73–79. MR 172969, DOI 10.4064/cm-13-1-73-79
  • M. K. Fort Jr., Mathematical Notes: A Theorem Concerning Functions Discontinuous on a Dense Set, Amer. Math. Monthly 58 (1951), no. 6, 408–410. MR 1527895, DOI 10.2307/2306555
  • K. M. Garg, On a function of non-symmetrical differentiability, Gaṇita 9 (1958), 65–75. MR 106973
  • K. M. Garg, On the derivability of functions discontinuous at a dense set, Rev. Math. Pures Appl. 7 (1962), 175–179. MR 145020
  • K. M. Garg, On nowhere monotone functions. I. Derivatives at a residual set, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), 173–177. MR 146317
  • K. M. Garg, On nowhere monotone functions. II. Derivates at sets of power $c$ and at sets of positive measure, Rev. Math. Pures Appl. 7 (1962), 663–671. MR 177075
  • K. M. Garg, On nowhere monotone functions. III. (Functions of first and second species), Rev. Math. Pures Appl. 8 (1963), 83–90. MR 151560
  • K. M. Garg, Applications of Denjoy analogue. III. Distribution of various typical level sets, Acta Math. Acad. Sci. Hungar. 14 (1963), 187–195. MR 152614, DOI 10.1007/BF01901940
  • K. M. Garg, On asymmetrical derivates of non-differentiable functions, Canadian J. Math. 20 (1968), 135–143. MR 220878, DOI 10.4153/CJM-1968-015-1
  • K. M. Garg, On singular functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 1441–1452. MR 259046
  • K. M. Garg, Monotonicity, continuity and levels of Darboux functions, Colloq. Math. 28 (1973), 91–103, 162. MR 323964, DOI 10.4064/cm-28-1-91-103
  • —, On some new notions of derivative, Mem. Amer. Math. Soc. (submitted). G. Goldowsky, Note sur les dérivées exactes, Mat. Sb. 35 (1928), 35-36. O. Hájek, Note sur la mesurabilité $B$ de la dérivée supérieure, Fund. Math. 44 (1957), 238-240. MR 20 #1734.
  • Paul R. Halmos, Lectures on Boolean algebras, Van Nostrand Mathematical Studies, No. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0167440
  • E. W. Hobson, The theory of functions of a real variable and the theory of Fourier’s series. Vol. I, Dover, New York, 1958. MR 19, 1166. V. Jarník, Über die Differenzierbarkeit steitiger Funktionen, Fund. Math. 21 (1933), 48-58.
  • R. L. Jeffery, The Theory of Functions of a Real Variable, Mathematical Expositions, No. 6, University of Toronto Press, Toronto, Ont., 1951. MR 0043162
  • Alfred Köpcke, Ueber eine durchaus differentiirbare, stetige Function mit Oscillationen in jedem Intervalle, Math. Ann. 34 (1889), no. 2, 161–171 (German). MR 1510572, DOI 10.1007/BF01453433
  • A. Kronrod, Sur la structure de l’ensemble des points de discontinuité d’une fonction dérivable en ses points de continuité, Izv. Akad. Nauk SSSR Ser. Mat. 1939, 569-578. (Russian) MR 1, 302.
  • K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
  • J. S. Lipiński, On derivatives of singular functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 625–628 (English, with Russian summary). MR 327993
  • Solomon Marcus, Sur les ensembles stationnaires des fonctions dérivées—finies ou infinies, Com. Acad. R. P. Romîne 12 (1962), 399–402 (Romanian, with French and Russian summaries). MR 155942
  • Anthony P. Morse, Dini derivatives of continuous functions, Proc. Amer. Math. Soc. 5 (1954), 126–130. MR 60000, DOI 10.1090/S0002-9939-1954-0060000-2
  • I. P. Natanson, Teoriya funkciĭ veščestvennoĭ peremennoĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR 0039790
  • C. J. Neugebauer, Symmetric, continuous, and smooth functions, Duke Math. J. 31 (1964), 23–31. MR 158035, DOI 10.1215/S0012-7094-64-03102-3
  • David Preiss, Approximate derivatives and Baire classes, Czechoslovak Math. J. 21(96) (1971), 373–382. MR 286951, DOI 10.21136/CMJ.1971.101037
  • B. V. Rjazanov, Functions of class $V_{\gamma }$, Vestnik Moskov. Univ. Ser. I Mat. Meh. 23 (1968), no. 6, 36–39 (Russian, with English summary). MR 0252584
  • S. Saks, Theory of the integral, Monografie Mat., vol. 7, PWN, Warsaw, 1937.
  • Tadeusz Świątkowski, On the conditions of monotonicity of functions, Fund. Math. 59 (1966), 189–201. MR 199324, DOI 10.4064/fm-59-2-189-201
  • G. Tolstoff, Sur quelques propriétés des fonctions approximativement continues, Rec. Math. (Moscou) [Mat. Sbornik] N.S. 5(47) (1939), 637–645 (French, with Russian summary). MR 0001267
  • L. Tonelli, Sulle derivate esatte, Mem. Accad. Sci. Ist. Bologna (8) 8 (1930/31), 13-15. W. H. Young, On the infinite derivates of a function of a single real variable, Ark. Mat. Astr. Fys. 1 (1903), 201-204.
  • Z. Zahorski, Punktmengen, in welchen eine stetige Funktion nicht differenzierbar ist, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 487–510 (Russian., with German summary). MR 0004869
  • Zygmunt Zahorski, Sur l’ensemble des points de non-dérivabilité d’une fonction continue, Bull. Soc. Math. France 74 (1946), 147–178 (French). MR 22592, DOI 10.24033/bsmf.1381
  • Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
  • A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47–76. MR 12691, DOI 10.1215/S0012-7094-45-01206-3
  • —, Trigonometric series. Vol. 1, Cambridge Univ. Press, New York and London, 1968. MR 38 #4882.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24
  • Retrieve articles in all journals with MSC: 26A24
Additional Information
  • © Copyright 1975 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 210 (1975), 295-329
  • MSC: Primary 26A24
  • DOI: https://doi.org/10.1090/S0002-9947-1975-0369629-3
  • MathSciNet review: 0369629