Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A classification theorem for abelian $ p$-groups


Author: R. B. Warfield
Journal: Trans. Amer. Math. Soc. 210 (1975), 149-168
MSC: Primary 20K10
DOI: https://doi.org/10.1090/S0002-9947-1975-0372071-2
MathSciNet review: 0372071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new class of Abelian $ p$-groups, called $ S$-groups, is studied, and the groups in this class are classified in terms of cardinal invariants. The class of $ S$-groups includes Nunke's totally projective $ p$-groups. The invariants consist of the Ulm invariants (which Hill has shown can be used to classify the totally projective groups) together with a new sequence of invariants indexed by limit ordinals which are not cofinal with $ \omega $. The paper includes a fairly complete discussion of dense isotype subgroups of totally projective $ p$-groups, including necessary and sufficient conditions for two of them to be congruent under the action of an automorphism of the group. It also includes an extension of Ulm's theorem to a class of mixed modules over a discrete valuation ring.


References [Enhancements On Off] (What's this?)

  • [1] B. Edington, Isomorphism invariants in quotient categories of Abelian groups, Thesis, New Mexico State University, 1972.
  • [2] L. Fuchs, Notes on Abelian groups. II, Acta Math. Acad. Sci. Hungar. 11 (1960), 117-125. MR 23 #A3175. MR 0125878 (23:A3175)
  • [3] -, Infinite Abelian groups. Vol. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [4] D. K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391; Correction, ibid. (2) 71 (1960), 197. MR 21 #3481; 23 #A206. MR 0104728 (21:3481)
  • [5] -, On the structure of Ext, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman, Chicago, III., 1963, pp. 195-210. MR 39 #4253. MR 0242926 (39:4253)
  • [6] P. D. Hill, Isotype subgroups of direct sums of countable groups, Illinois J. Math. 13 (1969), 281-290. MR 39 #1550. MR 0240198 (39:1550)
  • [7] P. D. Hill, On the classification of Abelian groups, Mimeographed notes, 1968.
  • [8] P. D. Hill and C. Megibben, On direct sums of countable groups and generalizations, Studies on Abelian Groups (Sympos., Montpellier, 1967), Springer, Berlin, 1968, pp. 183-206. MR 39 #4270. MR 0242943 (39:4270)
  • [9] J. M. Irwin and E. A. Walker, On $ N$-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1363-1374. MR 25 #119a. MR 0136653 (25:119a)
  • [10] -, On isotype subgroups of Abelian groups, Bull. Soc. Math. France 89 (1961), 451-460. MR 26 #5054. MR 0147539 (26:5054)
  • [11] I. Kaplansky, Infinite Abelian groups, rev. ed., Univ. of Michigan Press, Ann Arbor, Mich., 1969. MR 38 #2208. MR 0233887 (38:2208)
  • [12] L. Ya. Kulikov, Generalized primary groups. I, II, Trudy Moskov. Mat. Obšč. 1 (1952), 247-326; ibid. 2 (1953), 85-167. (Russian) MR 14, 132; 15, 9. MR 0049188 (14:132d)
  • [13] C. K. Megibben, On $ {p^\alpha }$-high injectives, Math. Z. 122 (1971), 104-110. MR 45 #8726. MR 0299678 (45:8726)
  • [14] R. J. Nunke, Modules of extensions over Dedekind rings, Illinois J. Math. 3 (1959), 222-241. MR 21 #1329. MR 0102538 (21:1329)
  • [15] -, Purity and subfunctors of the identity, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman, Chicago, Ill., 1963, pp. 121-171. MR 30 #156. MR 0169913 (30:156)
  • [16] -, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212. MR 36 #1538. MR 0218452 (36:1538)
  • [17] -, On the structure of Tor II, Pacific J. Math. 22 (1967), 453-464. MR 35 #5508. MR 0214659 (35:5508)
  • [18] -, Uniquely elongating modules, Proc. Conf. on Algebraic Groups (November 1972), Symposia Mathematica, vol. 12, Academic Press, London, 1974, pp. 315-330. MR 0364491 (51:745)
  • [19] L. D. Parker and E. A. Walker, An extension of the Ulm-Kolettis theorem, Studies on Abelian Groups (Sympos., Montpellier, 1967), Springer, Berlin, 1968, pp. 309-325. MR 42 #367. MR 0265458 (42:367)
  • [20] R. S. Pierce, Abelian Group Seminar Notes, New Mexico State University, 1968.
  • [21] E. A. Walker, Ulm's theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387-392. MR 47 #367. MR 0311805 (47:367)
  • [22] R. B. Warfield, Jr., Classification theorems for $ p$-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88-92. MR 45 #378. MR 0291284 (45:378)
  • [23] B. Wick, Classification theorems for infinite Abelian groups, Thesis, University of Washington, 1972.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20K10

Retrieve articles in all journals with MSC: 20K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0372071-2
Keywords: Ulm's theorem, totally projective groups, isotype subgroups, invariants, cotorsion groups, automorphisms of Abelian $ p$-groups
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society