Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Gelfond's method for algebraic independence


Author: W. Dale Brownawell
Journal: Trans. Amer. Math. Soc. 210 (1975), 1-26
MSC: Primary 10F35
MathSciNet review: 0382181
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends Gelfond's method for algebraic independence to fields $ K$ with transcendence type $ \leqslant \tau $. The main results show that the elements of a transcendence basis for $ K$ and at least two more numbers from a prescribed set are algebraically independent over $ Q$. The theorems have a common hypothesis: $ \{ {\alpha _1}, \ldots ,{\alpha _M}\} ,\{ {\beta _1}, \ldots ,{\beta _N}\} $ are sets of complex numbers, each of which is $ Q$-linearly independent.

THEOREM A. If $ (2\tau - 1) < MN$, then at least two of the numbers $ {\alpha _i},{\beta _j},\exp ({\alpha _i}{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N$, are algebraically dependent over $ K$.

THEOREM B. If $ 2\tau (M + N) \leqslant MN + M$, then at least two of the numbers $ {\alpha _i},\exp ({\alpha _i},{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N$, are algebraically dependent over $ K$.

THEOREM C. If $ 2\tau (M + N) \leqslant MN$, then at least two of the numbers $ 1 \leqslant i \leqslant M,1 \leqslant j \leqslant N$, are algebraically dependent over $ K$.


References [Enhancements On Off] (What's this?)

  • [1] William W. Adams, Transcendental numbers in the 𝑃-adic domain, Amer. J. Math. 88 (1966), 279–308. MR 0197399
  • [2] W. Dale Brownawell, Some transcendence results for the exponential function, Norske Vid. Selsk. Skr. (Trondheim) 11 (1972), 2. MR 0304319
  • [3] Dale Brownawell, The algebraic independence of certain values of the exponential function, Norske Vid. Selsk. Skr. (Trondheim) 23 (1972), 5. MR 0335447
  • [4] W. Dale Brownawell, Sequences of Diophantine approximations, J. Number Theory 6 (1974), 11–21. MR 0337803
  • [5] W. Dale Brownawell, The algebraic independence of certain numbers related by the exponential function, J. Number Theory 6 (1974), 22–31. MR 0337804
  • [6] P. Bundschuh, Review 10021, Zbl. Math. 241 (1973), 45-46.
  • [7] Pieter Leendert Cijsouw, Transcendence measures, Universiteit van Amsterdam, Amsterdam., 1972. Doctoral dissertation, University of Amsterdam. MR 0349596
  • [8] N. I. Fel′dman, The measure of transcendency of the number 𝜋, Izv. Akad. Nauk SSSR. Ser. Mat. 24 (1960), 357–368 (Russian). MR 0114804
  • [9] N. I. Fel′dman, Approximation by algebraic numbers to logarithms of algebraic numbers., Izv. Akad. Nauk SSSR. Ser. Mat. 24 (1960), 475–492 (Russian). MR 0114805
  • [10] A. O. Gel′fond, On the algebraic independence of algebraic powers of algebraic numbers, Doklady Akad. Nauk SSSR (N.S.) 64 (1949), 277–280 (Russian). MR 0029930
  • [11] A. O. Gel′fond, Transcendental and algebraic numbers, Translated from the first Russian edition by Leo F. Boron, Dover Publications, Inc., New York, 1960. MR 0111736
  • [12] Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
  • [13] Serge Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0214547
  • [14] K. Mahler, An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100. MR 0124467
  • [15] K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344. MR 0138593
  • [16] Theodor Schneider, Einführung in die transzendenten Zahlen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0086842
  • [17] A. A. Šmelev, The algebraic independence of certain transcendental numbers, Mat. Zametki 3 (1968), 51–58 (Russian). MR 0237439
  • [18] A. A. Šmelev, The algebraic independence of certain numbers, Mat. Zametki 4 (1968), 525–532 (Russian). MR 0237440
  • [19] A. A. Šmelev, The method of A. O. Gel′fond in the theory of transcendental numbers, Mat. Zametki 10 (1971), 415–426 (Russian). MR 0297714
  • [20] A. A. Šmelev, On the question of the algebraic independence of algebraic powers of algebraic numbers, Mat. Zametki 11 (1972), 635–644 (Russian). MR 0299563
  • [21] T. N. Shorey, Algebraic independence of certain numbers in the 𝑃-adic domain, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 423–435. MR 0316393
  • [22] R. Tijdeman, On the number of zeros of general exponential polynomials, Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33 (1971), 1–7. MR 0286986
  • [23] R. Tijdeman, On the algebraic independence of certain numbers, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math. 33 (1971), 146–162. MR 0294264
  • [24] Michel Waldschmidt, Solution d’un problème de Schneider sur les nombres transcendants, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A697–A700 (French). MR 0269604
  • [25] -, Amelioration d'un théorème de Lang sur l'indépendance algébrique d'exponentielles, C. R. Acad. Sci. Sér. A-B 272 (1971), A413-A415. MR 43 #6163.
  • [26] Michel Waldschmidt, Indépendance algébrique des valeurs de la fonction exponentielle, Bull. Soc. Math. France 99 (1971), 285–304 (French). MR 0302576
  • [27] -, Propriétés arithmétiques des valeurs de fonctions méromorphes algébriquement Indépendantes, Acta Arithmetica 23 (1973), 19-88.
  • [28] Michel Waldschmidt, Solution du huitième problème de Schneider, J. Number Theory 5 (1973), 191–202 (French, with English summary). MR 0321884
  • [29] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10F35

Retrieve articles in all journals with MSC: 10F35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0382181-1
Keywords: Transcendental numbers, algebraically independent numbers, exponential function, diophantine approximations, sequences of approximations, Liouville estimates, transcendence measure, transcendence type
Article copyright: © Copyright 1975 American Mathematical Society