Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The spinor genus of quaternion orders

Author: Gordon L. Nipp
Journal: Trans. Amer. Math. Soc. 211 (1975), 299-309
MSC: Primary 10C05; Secondary 16A18
MathSciNet review: 0376526
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let D be a global domain whose quotient field F does not have characteristic 2, let $ \mathfrak{A}$ be a quaternion algebra over F, and let $ \mathfrak{D}$ be an order on $ \mathfrak{A}$ over D. A right $ \mathfrak{D}$-module M which is simultaneously a lattice on $ \mathfrak{A}$ over D is said to be right $ \mathfrak{D}$-generic if there exists $ \alpha \in \mathfrak{A},N(\alpha ) \ne 0$, such that $ {\alpha ^{ - 1}}M \in {\operatorname{gen}}\;\mathfrak{D}$. Our main result is that every right $ \mathfrak{D}$-generic module is cyclic if and only if every class in the spinor genus of $ \mathfrak{D}$ represents a unit in D. One consequence is that $ \mathfrak{D}$ is in a spinor genus of one class if and only if $ \mathfrak{D}$-generic modules are cyclic and $ \mathfrak{D}$ represents every unit represented by its spinor genus. In addition, it is shown that a necessary and sufficient condition that an integral ternary lattice L be in a spinor genus of one class is that every right $ {\mathfrak{D}_L}$-generic pair be equivalent to a two-sided $ {\mathfrak{D}_L}$-generic pair, where $ {\mathfrak{D}_L}$ is the quaternion order associated with L.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 # 8034. MR 0117252 (22:8034)
  • [2] L. E. Dickson, Studies in the theory of numbers, Chelsea, New York, 1930.
  • [3] I. Kaplansky, Submodules of quaternion algebras, Proc. London Math. Soc. (3) 19 (1969), 219-232. MR 39 # 1496. MR 0240142 (39:1496)
  • [4] G. Nipp, Quaternion orders associated with ternary lattices, Pacific J. Math. 53 (1974). MR 0357324 (50:9792)
  • [5] O. T. O'Meara, Introduction to quadratic forms, Die Grundlehren der math. Wissenschaften, Band 117, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 27 # 2485.
  • [6] G. Pall, On generalized quaternions, Trans. Amer. Math. Soc. 59 (1946), 280-332. MR 8, 318. MR 0018702 (8:318b)
  • [7] G. L. Watson, Integral quadratic forms, Cambridge Univ. Press, Cambridge, 1960. MR 0118704 (22:9475)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10C05, 16A18

Retrieve articles in all journals with MSC: 10C05, 16A18

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society