RESULTS ON SUMS OF CONTINUED FRACTIONS

BY

JAMES L. HLAVKA

ABSTRACT. Let $F(m)$ be the (Cantor) set of infinite continued fractions with partial quotients no greater than m and let $F(m) + F(n) = \{a + \beta: a \in F(m), \beta \in F(n)\}$. We show that $F(3) + F(4)$ is an interval of length $1.14 \ldots$ so every real number is the sum of an integer, an element of $F(3)$ and an element of $F(4)$. Similar results are given for $F(2) + F(7)$, $F(2) + F(2) + F(4)$, $F(2) + F(3) + F(3)$ and $F(2) + F(2) + F(2) + F(2)$. The techniques used are applicable to any Cantor sets in \mathbb{R} for which certain parameters can be evaluated.

Marshall Hall, Jr. [3] proved that $F(4) + F(4) \equiv \mathbb{R}$ (mod 1) (all notation is defined in the next paragraph) and posed the question: is $F(3) + F(4) \equiv \mathbb{R}$ (mod 1)? In this paper we prove $F(3) + F(4) \equiv \mathbb{R}$ (mod 1) and several other results, summarized in Table 1. Only two questions concerning when a sum of $F(m)$, $m \in \mathbb{R}$ remain open: $F(2) + F(5) \equiv \mathbb{R}$? and $F(2) + F(6) \equiv \mathbb{R}$? We conjecture that they are both false.

<table>
<thead>
<tr>
<th>$F(2) + F(4) \not\equiv \mathbb{R}$</th>
<th>$F(3) + F(3) \not\equiv \mathbb{R}$</th>
<th>$F(2) + F(2) + F(3) \not\equiv \mathbb{R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(2) + F(5)$?</td>
<td>$F(3) + F(4) \equiv \mathbb{R}$</td>
<td>$F(2) + F(2) + F(4) \equiv \mathbb{R}$</td>
</tr>
<tr>
<td>$F(2) + F(6)$?</td>
<td></td>
<td>$F(2) + F(3) + F(3) \equiv \mathbb{R}$</td>
</tr>
<tr>
<td>$F(2) + F(7) \equiv \mathbb{R}$</td>
<td>$F(2) + F(2) + F(2) + F(2) \equiv \mathbb{R}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. All congruences are modulo 1

We let \mathbb{N} be the natural numbers and \mathbb{R} the real numbers. Lower case Roman letters except g and h will be elements of \mathbb{N}; Greek letters elements of \mathbb{R}. Let

$$\langle a_1, a_2, \ldots \rangle = \frac{1}{a_1} + \frac{1}{a_2} + \ldots ,$$

Received by the editors June 25, 1974.

AMS (MOS) subject classifications (1970). Primary 10A30, 10F20; Secondary 10F40, 10J99.

Key words and phrases. Continued fractions, sums of Cantor sets, congruence modulo 1.
and

\[F(m) = \{ (a_1, a_2, \ldots) : 1 \leq a_i \leq m \text{ for all } i \in \mathbb{N} \}. \]

When working with continued fractions it is convenient to write intervals without ordering their endpoints, so we define

\[(a, \beta) = \{ \xi \in \mathbb{R} : \min(a, \beta) < \xi < \max(a, \beta) \} \]

and

\[[a, \beta] = \{ \xi \in \mathbb{R} : \min(a, \beta) \leq \xi \leq \max(a, \beta) \}. \]

If \(A \) and \(B \) are subsets of \(\mathbb{R} \), let \(\mathbb{A} \) = the span of \(A = \sup(a - \beta) \) over all \(a, \beta \in A \) and \(A + B = \{ a + \beta : a \in A, \beta \in B \} \). Write "\(A + B = \mathbb{R} \text{ (mod 1)} \)" to mean "\(\xi \in \mathbb{R} \) implies \(\xi \equiv a + \beta \pmod{1} \) for some \(a \in A, \beta \in B. \)" Let \(P(m) \) be the special closed interval \(I(\frac{m}{1}, \frac{1}{1}, \frac{1}{m}) \).

Note that \(I(\frac{m}{1}, \frac{1}{m}) \) and \(I(\frac{1}{1}, \frac{1}{m}) \) are the least and greatest elements of \(F(m) \), respectively, so \(F(m) \subset P(m) \). Moreover \(F(m) \subset F(m + 1) \). The latter inclusion immediately shows that every question of the form \(\sum F(m_i) = \mathbb{R} \) is covered in Table 1.

\(F(m) \) is a Cantor set so the natural approach to computing \(\sum F(m_i) \) is by deleting intervals from the \(P(m_i) \). Our objective is to devise an algorithm, called a construction of \(F(m) \), which controls the order of these deletions sufficiently to establish that \(\sum F(m_i) = \sum P(m_i) \) whenever this is true. (This is the same approach Hall used to investigate \(F(4) + E(4) \).)

Lemma 1. \(F(m) = P(m) \setminus O(m) \) = the set-theoretic difference of \(P(m) \) and \(O(m) \), where \(O(m) \) is defined by

\[O(m) = \bigcup \{ (a_1, \ldots, a_s, 1, m), (a_1, \ldots, a_s + 1, m) : s \in \mathbb{N}, \]

\[1 \leq a_i \leq m \text{ for } i \leq s \text{ and } a_s \neq m \}. \]

Proof. We show that \(O(m) \) is composed of precisely those intervals which are deleted from \(P(m) \) to form \(F(m) \).

First assume \(a \in P(m) \setminus F(m) \). Then \(a \) has a first partial quotient \(a_{r+1} \) which is greater than \(m \), with \(r > 0 \) and \(a_r \neq 1 \) when \(r = 1 \). Now if \(a_r = 1 \) then

\[a = (a_1, \ldots, a_{r-1}, a_r, \ldots) \]

\[\in \{ (a_1, \ldots, a_{r-1} + 1, m, 1), (a_1, \ldots, a_{r-1}, 1, m) \}. \]
and if $a_r > 1$ then

$$\alpha \in \langle (a_1, \ldots, a_r - 1, 1, m), (a_1, \ldots, a_r, m, 1) \rangle,$$

so $\alpha \in O(m)$. Conversely if $\alpha \in \langle (a_1, \ldots, a_s, 1, m), (a_1, \ldots, a_s + 1, m, 1) \rangle \subset O(m)$, then

1. $\alpha \in \langle (a_1, \ldots, a_s, 1, m), (a_1, \ldots, a_s + 1) \rangle$,

2. $\alpha = (a_1, \ldots, a_s + 1)$, or

3. $\alpha \in \langle (a_1, \ldots, a_s + 1), (a_1, \ldots, a_s + 1, m, 1) \rangle$.

If (2) then $\alpha = (a_1, \ldots, a_s, \alpha')$ where $(1, m) < \alpha' < 1$ so $\alpha' \notin F(m)$. Hence $\alpha \notin F(m)$. If (4) then $\alpha = (a_1, \ldots, a_s + 1, \alpha')$ where $\alpha' < (m, 1)$ and again $\alpha \notin F(m)$. Lastly, (3) implies $\alpha \notin F(m)$ since $F(m)$ contains only infinite continued fractions. □

We now define a construction of $F(m)$ as follows. Let $I_m^2 = P(m)$. Choose an interval O_m^2 of $O(m)$ and delete it from I_m^2, leaving two new intervals I_m^3 and I_m^4. From each delete an interval of $O(m)$, say O_m^3 and O_m^4 respectively. I_m^3 will be split into two intervals I_m^5 and I_m^6; I_m^4 will be split into I_m^7 and I_m^8. From each of I_m^5, \ldots, I_m^8 delete the interval O_m^5, \ldots, O_m^8 respectively. Continue in this way. This procedure is demonstrated in Figures 1a and 1b. If $O(m) = \bigcup_{i=2}^{\infty} O_i^i$ we call this procedure a construction C of $F(m)$. We call $F_m^k = \bigcup_{j=2}^{k} I_j^i$ the kth step in the construction of $F(m)$.

Figure 1a

Figure 1b
Lemma 2. If C is any construction of F(m), m > 1, and F_m^k is the kth step in this construction, then F(m) = \bigcap_{k=1}^{\infty} F_m^k.

Proof. Obvious from Figure 1b. □

Definition. If C is a construction of F(m), then

\[g_m = g_m(C) = \sup_i \left(\frac{O^i_{m}}{m^i} \right), \]

\[h_m = h_m(C) = \inf \left(\inf_i \left(\frac{1^{2i-1}}{m^i} \right), \inf_i \left(\frac{1^{2i}}{m^i} \right) \right), \]

and

\[h'_m = h'_m(C) = \sup_i \left(\sup_i \left(\frac{1^{2i-1}}{m^i} \right), \sup_i \left(\frac{1^{2i}}{m^i} \right) \right). \]

Theorem 3. If there exist constructions C and C' of F(m) and F(n) respectively such that

(5) \(g_m(C) \cdot g_n(C') \leq h_m(C) \cdot h_n(C') \)

(6) \(g_m(C) \cdot P(m) \leq P(n) \) and \(g_n(C') \cdot P(n) \leq P(m) \)

then \(F(m) + F(n) = P(m) + P(n) \).

Proof. Let \(\{i^i_m\}_{i=2}^{\infty} \) and \(\{j^j_n\}_{j=2}^{\infty} \) be the intervals appearing in the constructions C and C', respectively. Call the intervals \(i^i_m \) and \(j^j_n \) compatible (with respect to C and C'), written \(i^i_m \sim j^j_n \), iff

(7) \(g_m \cdot \overline{i^i_m} \leq \overline{j^j_n} \) and \(g_n \cdot \overline{j^j_n} \leq \overline{i^i_m} \).

Call the intervals \(i^i_m \) and \(j^j_n \) M-divisible, written \(i^i_m \sim^M j^j_n \), iff (8) or (9) is true, where (8) and (9) are the following (symmetric) conditions.

(8.1) \(i^{2i-1}_m \sim j^i_n \) and \(i^{2i}_m \sim j^i_n \),

(8.2) \((i^{2i-1}_m + j^i_n) \cup (i^{2i}_n + j^i_n) = i^i_m + j^i_n \), and

(8.3) \(M \cdot \overline{i^i_m} \leq \overline{j^i_n} \).

(9.1) \(i^i_m \sim i^{2j-1}_n \) and \(i^i_m \sim i^{2j}_n \),

(9.2) \((i^i_m + i^{2j-1}_n) \cup (i^i_m + i^{2j}_n) = i^i_m + j^i_n \), and

(9.3) \(M \cdot \overline{i^i_m} \leq \overline{i^i_n} \).
The four pairs of intervals appearing in (8.1) and (9.1) are said to be derived from the pair \((\ell^i_m, \ell^j_n)\).

It suffices to show that for some \(M \in \mathbb{R}^+\), \(i^i_m \sim j^i_n\) implies \(i^i_m \sim j^i_n\) for all \(i, j \geq 2\). To prove this, set \(S_0 = \{(i^2_m, j^2_n)\}\) and

\[S_{r+1} = \{(l, j): l \sim j \text{ and } (l, j) \text{ is derived from a pair } (l_0, j_0) \in S_r\}. \]

Clearly

\[\bigcup \{l + J: (l, j) \in S_{r+1}\} = \bigcup \{l + J: (l, j) \in S_r\} = \cdots = i^2_m + j^2_n = P(m) + P(n). \]

If \((l, j) \in S_r\), then \(\overline{I} \cdot J \leq \lambda^r \cdot \overline{i^2_m} \cdot \overline{j^2_n} \to 0\) as \(r \to \infty\), where \(\lambda = \max(1 - h_m, 1 - h_n) < 1\) (if \(b_m\) or \(b_n\) = 0 then \(g_m\) or \(g_n\) = 0 by (5) so \(F(m)\) or \(F(n)\) is not a Cantor set—contradiction). Since \(l \sim j\), the ratio \(\overline{I}/J\) is bounded so \(\overline{I} \to 0\) and \(J \to 0\). Therefore for each \(i\) there is an \(r_0\) such that \(O_i^m\) has been deleted from every \(I\) appearing in a pair \((l, j) \in S_r, r > r_0\).

Since \(O(m) = \bigcup_{i=2}^{\infty} O_i^m\),

\[(10) \quad O(m) \cap \left(\bigcap_{r=0}^{\infty} \left(\bigcup l: (l, j) \in S_r \right) \right) = \emptyset. \]

But for all \(r\), \(F(m) \subseteq \bigcup \{l: (l, j) \in S_r\} \subseteq P(m)\) so \((10)\) and Lemma 1 yield

\[F(m) = \bigcap_{r=0}^{\infty} \left(\bigcup l: (l, j) \in S_r \right). \]

Similarly for \(F(n)\). Since the sequence \(\bigcup \{l: (l, j) \in S_r\}_{r=0}^{\infty}\) is a nested sequence of compact sets, we obtain directly the result

\[F(m) + F(n) = \bigcap_{r=0}^{\infty} \left(\bigcup l + J: (l, j) \in S_r \right) = \bigcap_{r=0}^{\infty} (P(m) + P(n)) = P(m) + P(n). \]

Now fix \(M \geq \max(h_m/g_n, b_n/g_m)\) and assume \(i^i_m \sim j^i_n\). Since \(g_m g_n \leq b_m b_n\), we must have

\[(11) \quad \frac{i^i_m}{j^i_n} > \frac{g_n}{b_m} \]

or

\[(12) \quad \frac{i^i_m}{j^i_n} \leq \frac{h_n}{g_m}. \]

Assuming \((11)\) we will verify \((8)\). Similarly \((9)\) will follow from \((12)\), so this will show \(i^i_m \sim j^i_n\). So assume \((11)\) and set \(k = 2i - 1\) or \(2i\). Then recalling the definition of \(h_m\),
so \(\overline{t}_m \sim \overline{t}_n \). To check (8.2), let \(\overline{t}_{m-1}^i = [\alpha, \beta], \overline{t}_m^i = [y, \delta] \) and \(\overline{t}_n^i = [\alpha_0, \delta_0] \), with \(\alpha < \beta < y < \delta \) and \(\alpha_0 < \delta_0 \). Since

(13)

\[
\overline{t}_m^i > g_m \cdot \overline{t}_n^i > \overline{g}_m \cdot \overline{t}_m^i
\]

we have \(\delta_0 - \alpha_0 \geq y - \beta \) or \(\beta + \delta_0 \geq y + \alpha_0 \). Then

\[
(\overline{t}_{m-1}^i + \overline{t}_n^i) \cup (\overline{t}_m^i + \overline{t}_n^i) = [\alpha + \alpha_0, \beta + \delta_0] \cup [y + \alpha_0, \delta + \delta_0]
\]

\[
= [\alpha + \alpha_0, \delta + \delta_0] = \overline{t}_m^i + \overline{t}_n^i.
\]

Lastly, (8.3) is satisfied by our choice of \(M \). □

Lemma 4. If \(a = (a_1, \ldots, a_s, a') \), \(\beta = (a_1, \ldots, a_s, \beta') \), \(a' > 0 \), \(\beta' > 0 \),

\[
(\alpha' - \beta')/(\alpha - \beta) = (Q + \alpha')(Q + \beta')(1)^{s+1}q_s^2.
\]

Proof. We have

\[
\alpha - \beta = \frac{p_s a' + p_{s-1} \alpha' + p_s \beta' + p_{s-1} \beta}{q_s a' + q_{s-1} \beta' + q_s \beta}
\]

\[
= \frac{p_s}{q_s} \left\{ \frac{\alpha' + Q + p_{s-1} / q_s - Q}{\alpha' + q_{s-1} / q_s} - \frac{\beta' + Q + p_{s-1} / q_s - Q}{\beta' + q_{s-1} / q_s} \right\}
\]

\[
= \frac{p_s}{q_s} \left\{ \frac{p_{s-1} / q_s - Q}{q_s / q} \right\} \left\{ \frac{1}{\alpha' + Q} - \frac{1}{\beta' + Q} \right\}
\]

\[
= \frac{(-1)^{s+1}(\alpha' - \beta')}{q_s^2(\alpha' + Q)(\beta' + Q)}
\]

since \(p_{s-1} q_s - p_s q_{s-1} = (-1)^s \). The result follows immediately. □

Lemma 5. If \(y = (a_1, \ldots, a_s, y') \), \(\delta = (a_1, \ldots, a_s, \delta') \), \(y' > 0 \), \(\delta' > 0 \), and \(a, \beta, \alpha', \beta', Q \) are as in Lemma 4, then

(14)

\[
\frac{a - \beta}{y - \delta} = \frac{\alpha' - \beta'}{y' - \delta'} \frac{(Q + \gamma')(Q + \delta')}{(Q + \alpha')(Q + \beta')}
\]

and \(Q \in [1/(a_s + 1), 1] \).

Proof. Statement (14) is an immediate corollary of Lemma 4. The restriction on \(Q \) follows from the well-known result that \(Q = (a_s, \ldots, a_1) \). □
Theorem 6. \(F(3) + F(4) = P(3) + P(4) = [(\frac{3}{1}, 1) + (\frac{4}{1}, 1), (\frac{1}{3}, 1) + (\frac{1}{4}, 1)] = [.4709\ldots, 1.6197\ldots] \).

Proof. We produce constructions of \(F(3) \) and \(F(4) \) satisfying the hypotheses of Theorem 3. Let us begin by defining a canonical construction, \(C_m \), of \(F(m) \) for any \(m \), as follows. \(I^2_m \) must be \([\frac{m}{1}, 1 \), \(\frac{1}{m} \)). If
\[
I^m = [(a_1, \ldots, a_s, j, m, 1), (a_1, \ldots, a_s, m, 1)]
\]
with \(s \geq 0 \) and \(j \neq m \) then
\[
O^j_m = (a_1, \ldots, a_s, j, 1, m), (a_1, \ldots, a_s, j + 1, m, 1))
\]
so that
\[
I^{2i-1}_m = [(a_1, \ldots, a_s, j, m, 1), (a_1, \ldots, a_s, j + 1, m, 1)]
\]
and
\[
I^{2i}_m = [(a_1, \ldots, a_s, j + 1, m, 1), (a_1, \ldots, a_s, m, 1)].
\]
It is relatively easy to show that \(\bigcup_{i=2}^{\infty} O^i_m = O(m) \) so this does define a construction of \(F(m) \). The value of the constructions \(C_m \) is that we can readily calculate \(g_m(C_m) \) and \(h_m(C_m) \) (and \(h' = h_m(C_m) \) which will be needed later). We have
\[
g_m(C_m) = \max_{i \geq 2} \left(\frac{O^i_m}{I^2_m} \right)
= \max \frac{(a_1, \ldots, a_s, j, 1, m) - (a_1, \ldots, a_s, j + 1, m, 1)}{(a_1, \ldots, a_s, j, m, 1) - (a_1, \ldots, a_s, m, 1)}
\]
over \(1 \leq j \leq m, s \geq 0 \) and \(1 \leq a_i \leq m \) for \(i \leq s \). Using Lemma 5, we obtain
\[
g_m(C_m) \leq \max \left\{ \frac{(j, 1, m) - (j + 1, m)}{(j, m) - (m, 1)} \cdot \frac{(Q + j, m)}{(Q + j + 1, 1)}, \frac{(Q + j, 1, m)}{(Q + j + 1, m)} \right\}
\]
over \(1 \leq j \leq m \) and \(Q \in [1/(m + 1), 1] \). For each allowable value of \(j \) this expression is a rational function in \(Q \) whose maximum on the interval \([1/(m + 1), 1]\) can be readily calculated. A Univac 1108 was used to perform these calculations and then maximize over \(j \) (and for similar calculations arising later). We thus obtain the bounds
\[
g_3(C_3) \leq .2992\ldots \quad \text{and} \quad g_4(C_4) \leq .2278\ldots.
\]
Similarly
\[h_m(C_m) = \min_{i \geq 2} \left(\min \left(\frac{l^{2i-1}_m}{i^2_m}, \frac{l^{2i}_m}{i^2_m} \right) \right) \]

\[= \min_{i, a_i} \left(\frac{\langle a_1, \ldots, a_s, j, 1, m \rangle - \langle a_1, \ldots, a_s, j, m, 1 \rangle}{\langle a_1, \ldots, a_s, m, 1, m \rangle - \langle a_1, \ldots, a_s, j, m, 1 \rangle} \right) \]

\[\geq \min \left(\frac{\langle j, 1, m \rangle - \langle j, m, 1 \rangle}{\langle m, 1, m \rangle - \langle j, m, 1 \rangle} \cdot \frac{Q + \langle m, 1, m \rangle}{Q + \langle j, 1, m \rangle} \right) \]

\[\cdot \frac{\langle m, 1, m \rangle - \langle j + 1, m, 1 \rangle}{\langle m, 1, m \rangle - \langle j, m, 1 \rangle} \cdot \frac{Q + \langle j + 1, m, 1 \rangle}{Q + \langle j, m, 1 \rangle} \]

from which we obtain

\[h_3(C_3) \geq .2471 \ldots \quad \text{and} \quad h_4(C_4) \geq .2963 \ldots \]

A simple multiplication shows that

\[g_3(C_3) \cdot g_4(C_4) \leq .0667 < .0731 < h_3(C_3) \cdot h_4(C_4) \]

Also

\[g_3 \cdot P(3) \leq .2992 \times .5276 < P(4) = .6212 \ldots < \frac{.5276}{.2278} \leq \frac{P(3)}{g_4} \]

so by Theorem 3 we have the result \(F(3) + F(4) = P(3) + P(4) \).

Corollary 7. \(F(3) + F(4) \equiv R \pmod{1} \).

Proof. This is obvious since \(F(3) + F(4) \) contains an interval of length greater than one.

The values of \(g_3, g_4, h_3 \) and \(h_4 \) are in fact equal to the bounds given because these bounds arise from \(Q = 1/(m+1) \) or \(Q = 1 \), which are possible values of \(Q \). For \(g_2 \) and \(h_2 \), below, this does not happen.

Applying Theorem 3 to the canonical constructions of \(F(2) \) and \(F(12) \) as above we can establish \(F(2) + F(12) = P(2) + P(12) \), but now we find that the canonical construction of \(F(12) \) is not an optimal construction in terms of minimizing the ratio \(g_{12}/b_{12} \). This is because the maximal value of \(\frac{O_i^2}{l_m^{i^2}} \) always occurs at \(j = m - 1 \) but the minimal value of \(\min(l_m^{2i-1}, l_m^{2i})/l_m^{i^2} \)
only occurs at \(j = m - 1 \) if \(m \leq 4 \). A noncanonical construction can allow us to lower the number 12, but the best result is obtained by extending Theorem 3.

Theorem 8. If there exist constructions \(C \) and \(C' \) of \(F(m) \) and \(F(n) \) respectively, such that

\[
\begin{align*}
(15) & \quad \frac{O_l}{m} \cdot \frac{O_l}{n} < \min \left(\frac{I^2_{i-1}}{m}, \frac{I^2_j}{n} \right), \quad \min \left(\frac{I^2_{i-1}}{n}, \frac{I^2_j}{m} \right) \quad \text{for all } i, j \geq 2, \\
(16) & \quad g_m \cdot \frac{P(m)}{m} \leq \frac{P(n)}{n} \quad \text{and} \quad g_n \cdot \frac{P(n)}{n} \leq \frac{P(m)}{m}, \\
(17) & \quad \max \left(\frac{h_m}{m}, \frac{h_n}{n} \right) \cdot g_m g_n \leq h_m h_n,
\end{align*}
\]

then \(F(m) + F(n) = P(m) + P(n) \).

Proof. Call the intervals \(I^i_m \) and \(I^i_n \) M-divisible* iff (8), (9) or

\[
(18.1) \quad (I^2_{i-1} + I^2_{j-1}) \cup (I^2_{i-1} + I^2_j) \cup (I^2_i + I^2_{j-1}) \cup (I^2_i + I^2_j) = I^i_m + I^i_n
\]

holds. The proof now parallels the proof of Theorem 3; the only significant difference being to show that a compatible pair is M-divisible* when neither (11) nor (12) holds. So assume

\[
\begin{align*}
(19) & \quad \frac{h_n}{g_n} \leq \frac{\bar{I}_m}{\bar{I}_n} \leq \frac{g_m}{h_m}.
\end{align*}
\]

Let \(I^2_{i-1} = [\alpha, \beta], I^2_i = [\gamma, \delta], I^2_{j-1} = [\alpha_0, \beta_0], \) and \(I^2_j = [\gamma_0, \delta_0] \). From (15) we obtain

\[
\frac{O_l}{m} \leq \min \left(\frac{I^2_{i-1}}{m}, \frac{I^2_j}{n} \right) \quad \text{or} \quad \frac{O_l}{n} \leq \min \left(\frac{I^2_{i-1}}{n}, \frac{I^2_j}{m} \right);
\]

assume for simplicity the latter. Then \(\gamma_0 - \beta_0 \leq \min(\beta - \alpha, \delta - \gamma) \) so \(\alpha + \gamma_0 \leq \beta + \beta_0 \) and \(\gamma + \gamma_0 \leq \delta + \delta_0 \). Then the LHS of (18.1) is

\[
\begin{align*}
[\alpha + \alpha_0, \beta + \beta_0] \cup [\alpha + \gamma_0, \beta + \delta_0] \cup [\gamma + \alpha_0, \delta + \beta_0] \cup [\gamma + \gamma_0, \delta + \delta_0] \\
= [\alpha + \alpha_0, \beta + \delta_0] \cup [\gamma + \alpha_0, \delta + \delta_0] = I^i_m + I^i_n,
\end{align*}
\]

For \(k = 2i - 1 \) or \(2i, \ l = 2j - 1 \) or \(2j \), we have

\[
\begin{align*}
\frac{h_m}{m} \cdot \frac{h_n}{n} \geq g_m g_n \cdot I^i_m \geq \frac{h_m}{m} \cdot \frac{h_n}{n} \cdot g_m g_n \cdot I^i_n \geq g_m g_n \cdot I^i_n.
\end{align*}
\]
Theorem 9. \(F(2) + F(7) = P(2) + P(7) = [.4928..., 1.6195...] \equiv R \pmod{1} \).

Proof. The canonical constructions can be used. We again apply Lemma 5 to obtain the bounds

\[g_2 < .4456..., h_2 > .1686..., h_2' < .4589..., g_7 < .1343..., \]

\[h_7 > .2906..., h_7' < .6359..., \quad \text{and} \quad \frac{O_7^j}{\min(\frac{i_7^{2j-1}}{1}, \frac{i_7^{2j}}{1})} \leq .3594... \]

Since \(\min(\frac{i_2^{2j-1}}{1}, \frac{i_2^{2j}}{1})/O_2^j \geq h_2/g_2 \), it is now easy to verify the hypotheses of Theorem 8. □

For any constructions of \(F(2) \) and \(F(6) \), equation (15) fails whenever an interval of the type ((\(a_1, a_s, 5, 6 \), (\(a_1, a_s, 6, 6, 1 \)) is deleted from \(F(6) \). Thus, as (15) is intuitively a "best possible" condition in the sense that no weakening approximations were made, it is probable that \(F(2) + F(6) \neq P(2) + P(6) \). Moreover, since (15) fails infinitely often, \(F(2) + F(6) \) may possibly be a Cantor set.

The negative results \(F(3) + F(3) \not\in R \pmod{1} \) and \(F(2) + F(4) \not\in R \pmod{1} \) can be verified directly. \(P(2) + P(4) \) has length less than one and \(F(3) \subset [\.5274..., .62178... \cup [.62200..., 1.5826...] \)

We now look at sums of \(F(m_1) + ... + F(m_s) \) with \(s > 2 \).

Theorem 10. Let \(C_1, ..., C_s \) be constructions of \(F(m_1), ..., F(m_s) \) respectively (not necessarily canonical constructions). If

\[\sum_{i=1}^{s} h_{m_i} + h_{m_i} \leq \sum_{i=1}^{s} \frac{1}{m_{i}} \]

then \(F(m_1) + ... + F(m_s) = P(m_1) + ... + P(m_s) \).

Proof. Again we mimic the proof of Theorem 3. Let \((i_{m_1}^1, ..., i_{m_s}^s) \) be compatible iff

\[h_{m_i} \cdot i_{m_k}^k \leq i_{m_i}^i \quad \text{for} \quad 1 \leq i, k \leq s. \]
Call \((i_{m_1}^1, \ldots, i_{m_s}^s)\) dividable iff
\[
(i_{n}^{2j-1} + (i_{m_1}^1 + \cdots + \hat{i}_{n}^j + \cdots + i_{m_s}^s)) \cup (i_{n}^{2j} + (i_{m_1}^1 + \cdots + \hat{i}_{n}^j + \cdots + i_{m_s}^s))
\]
\[
= i_{m_1}^1 + \cdots + i_{m_s}^s,
\]
and \((i_{m_1}^1, \ldots, i_{n}^{2j-1}, \ldots, i_{m_s}^s)\) and \((i_{m_1}^1, \ldots, i_{n}^{2j}, \ldots, i_{m_s}^s)\) are compatible, where \(\sim\) means omission and \(n\) is such that
\[
\frac{i_{n}^j}{m_i} ≥ \frac{g_n}{m_i} \quad \text{for} \quad 1 ≤ i ≤ s.
\]

Hypothesis (20) says the beginning \(s\)-tuple \((i_{m_1}^1, \ldots, i_{m_s}^s)\) is compatible, so the proof reduces to showing that every compatible \(s\)-tuple is dividable. Let \(k = 2j - 1\) or \(2j\). Then \(\frac{h_n}{m_i} ≥ \frac{h_n}{m_i} \cdot \frac{i_{n}^j}{m_i}\) for \(1 ≤ i ≤ s\), and the other combinations of subscripts occurring in (22) trivially produce correct inequalities, so \((i_{m_1}^1, \ldots, i_{m_1}^k, \ldots, i_{m_s}^s)\) is compatible. From (21), we have
\[
g_n < h_{m_1} + \cdots + \hat{h}_{n} + \cdots + h_{m_s}
\]
so that
\[
\frac{i_{m_1}^1}{m_1} + \cdots + \frac{i_{n}^j}{m_n} + \cdots + \frac{i_{m_s}^s}{m_s} ≥ h_{m_1} \cdot \frac{i_{m_1}^1}{m_1} + \cdots + h_{m_s} \cdot \frac{i_{m_s}^s}{m_s}
\]
\[=(h_{m_1} + \cdots + \hat{h}_{n} + \cdots + h_{m_s}) \cdot \frac{i_{n}^j}{m_n} > g_n \cdot \frac{i_{n}^j}{m_n} > 0.
\]

This is the analog of equation (13) and is precisely the inequality needed to establish (23). \(\Box\)

Theorem 11. The following are all true.

\[
F(2) + F(2) + F(4) = P(2) + P(2) + P(4) \equiv R \pmod{1},
\]
\[
F(2) + F(3) + F(3) = P(2) + P(3) + P(3) \equiv R \pmod{1},
\]
and
\[
F(2) + F(2) + F(2) + F(2) = P(2) + P(2) + P(2) + P(2) \equiv R \pmod{1}.
\]

Proof. Apply Theorem 10 to the canonical constructions of \(F(2), F(3)\) and \(F(4)\). \(\Box\)

The final result listed in Table 1, \(F(2) + F(2) + F(3) \not \equiv R\), results from inspecting the first few subdivisions of \(F(2)\) and \(F(3)\).
T. W. Cusick and R. A. Lee [1], [2] have investigated $\sum_i S(m_i)$, where

$$S(m) = \{(a_1, a_2, \ldots): a_i \geq m \text{ for all } i\}$$

$$\cup\{(a_1, \ldots, a_s): a_i \geq m \text{ for } 1 \leq i \leq s, s \geq 1\} \cup \{0\}.$$

They have shown [2] that

$$\sum_{i=1}^{m} S(m) = [0, 1].$$

Our Theorem 10 can be applied to $\sum_i S(m_i)$ in place of $\sum_i F(m_i)$, whereupon

(25)

follows as a relatively easy special case.

More generally, Theorems 3, 8 and 10 are applicable to any Cantor sets for which g_m, h_m and h_m' can be evaluated.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53705