A GENERALIZATION OF JARŇÍK'S THEOREM
ON DIOPHANTINE APPROXIMATIONS
TO RIDOUT TYPE NUMBERS

BY

I. BOROSH AND A. S. FRAENKEL

ABSTRACT. Let \(s \) be a positive integer, \(c > 1 \), \(\mu_0, \ldots, \mu_s \) reals in \([0, 1]\), \(\sigma = \sum_{i=0}^{s} \mu_i \), and \(t \) the number of nonzero \(\mu_i \). Let \(\Pi_i \) \((i = 0, \ldots, s)\) be \(s + 1 \) disjoint sets of primes and \(S \) the set of all \((s + 1)\)-tuples of integers \((p_0, \ldots, p_s)\) satisfying \(p_0 > 0 \), \(p_i = p_i^k p_i' \), where the \(p_i' \) are integers satisfying \(|p_i'| \leq c |p_i|^\mu_i \), and all prime factors of \(p_i' \) are in \(\Pi_i \) \((i = 0, \ldots, s)\). Let \(X > 0 \) if \(t = 0 \), \(X \geq \sigma / \min(s, t) \) otherwise, \(E_\lambda \) the set of all real \(s \) -tuples \((a_1, \ldots, a_s)\) satisfying \(|a_i - p_i / p_0| < p_0^{-\lambda} \) \((i = 1, \ldots, s)\) for an infinite number of \((p_0, \ldots, p_s) \in S\). The main result is that the Hausdorff dimension of \(E_\lambda \) is \(\sigma / \lambda \). Related results are obtained when also lower bounds are placed on the \(p_i' \). The case \(s = 1 \) was settled previously (Proc. London Math. Soc. 15 (1965), 458-470). The case \(\mu_i = 1 \) \((i = 0, \ldots, s)\) gives a well-known theorem of Jarňík (Math. Z. 33 (1931), 505-543).

1. Introduction. Jarňík [3] proved that the Hausdorff dimension of the set \(E \) of all real \(s \) -tuples \((a_1, \ldots, a_s)\) satisfying \(|a_i - p_i / q| < q^{-\lambda} \), \(i = 1, \ldots, s \), for an infinite number of \((s + 1)\)-tuples \((q, p_1, \ldots, p_s)\) of integers with \(q > 0 \), is \((s + 1)\lambda^{-1}\) provided that \(\lambda > 1 + s^{-1} \).

In this paper we investigate the case where \(q, p_1, \ldots, p_s \) are restricted to certain sets of integers which were considered by Ridout in his extension of Roth's theorem [6]. In [1] it was proved that the set \(E \) in this case has Lebesgue measure 0. The Hausdorff dimension for the one-dimensional case of the problem was determined by the authors in [2].

2. Definitions and notation. Let \(s \) be a positive integer, \(\mu_0, \mu_1, \ldots, \mu_s \) reals in \([0, 1]\) and \(\sigma = \sum_{i=0}^{s} \mu_i \). Let \(\Pi_i = \{P_{i,1}, \ldots, P_{i,n_i}\} \((i = 0, \ldots, s)\) be \(s + 1 \) sets of distinct primes, \(C_i \) the set of integers all of whose prime factors belong to \(\Pi_i \).

We say that condition 1 is satisfied, if there exists \(P_i \in \Pi_i \) for \(i = 0, \ldots, s \), such that

\[
(Ia) \quad P_i \neq P_0 \quad (i = 1, \ldots, s).
\]

Received by the editors March 12, 1973.

(lb) Those among the numbers \((1 - \mu_i)/\log P_0, \ldots, (1 - \mu_s)/\log P_s\)
which are not zero are linearly independent over the field of rational numbers.

In particular, condition (lb) is satisfied if \(\mu_i = 1\), \(i = 0, \ldots, s\).

Let \(c > 1\). We define \(S = S(c; \mu_0, \ldots, \mu_s; C_0, \ldots, C_s)\) to be the set of all \((s + 1)\)-tuples of integers \((p_0, \ldots, p_s), p_0 > 0\), satisfying

(i) \((p_i, p_0) = 1, \ i = 1, \ldots, s\).

(ii) \(p_i = p_i^* \cdot p_i'\) with \(p_i' \in C_i\) and \(p_i^*\) any integer satisfying \(|p_i^*| < c|p_i|^{\mu_i}\), \(i = 0, \ldots, s\).

Similarly we define \(S'^T = S^T(c; \mu_0, \ldots, \mu_s; C_0, \ldots, C_s)\) by replacing (ii) by the requirement

(ii)' \(p_i = p_i^* \cdot p_i'\) where \(p_i' \in C_i\) and \(p_i^*\) is any integer satisfying \(|p_i^*| < c|p_i|^{\mu_i}\), \(i = 0, \ldots, s\).

Let \(\mu_0', \mu_1', \ldots, \mu_s'\) be reals satisfying (a) \(0 \leq \mu'_i \leq \mu_i\); (b) if \(\sigma > 0\),
then \(0 \leq \mu'_i < \mu_i\) for some \(i\). We define a set \(S'\) in a similar way to \(S\) and \(S^T\), but replacing this time condition (ii) by the requirement

(ii)' \(p_i = p_i^* \cdot p_i'\) where \(p_i' \in C_i\) and \(p_i^*\) is any integer satisfying \(|p_i^*| < c|p_i|^{\mu_i}\), \(i = 0, \ldots, s\).

Let \(\lambda, D\) be positive reals, \(W\) an \(s\)-dimensional interval with edges parallel to the axes. We define the set \(E = E(\lambda, W, S, D)\) to be the set of all \(s\)-tuples \((\alpha_0, \ldots, \alpha_s) \in W\) satisfying \(\alpha_i - p_i \cdot p_0^{-1} < D p_0^{-\lambda}\), \(i = 1, \ldots, s,\)
for an infinite number of \((s + 1)\)-tuples \((p_0, \ldots, p_s)\) from \(S\). Similarly we define \(E^T = E^T(\lambda, W, S^T, D)\) and \(E' = E'(\lambda, W, S', D)\).

By \(R^s\) we denote the Euclidean space of \(s\) dimensions, and by \(d(x, y)\)
the distance between two points \(x, y\) of \(R^s\). By \(\delta(E), \alpha - m^*E, \dim E\) we denote, respectively, the diameter, the Hausdorff measure with respect to the function \(r^\alpha\) and the Hausdorff dimension of the set \(E\). By a cube we mean an \(s\)-dimensional interval with edges parallel to the axes.

3. Main results. The main results of this paper are

Theorem I. \(\dim E^T \leq \dim E' \leq \dim E \leq \sigma/\lambda\).

Theorem II. Let \(t\) be the number of \(\mu_i\) which are not zero \((i = 0, \ldots, s)\).
Let \(\lambda\) satisfy

\[
\lambda > \begin{cases} 0 & \text{if } t = 0, \\ \sigma/\min(s, t) & \text{if } t > 0. \end{cases}
\]
If condition I holds, then
\[\dim E \geq \dim E' \geq \dim E^T \geq \sigma/\lambda. \]

Theorem III. If (1) and (Ia) hold then \(\dim E \geq \dim E' \geq \sigma/\lambda. \)

These results imply \(\dim E = \dim E' = \sigma/\lambda \) if (1) and (Ia) hold and \(\dim E = \dim E' = \dim E^T = \sigma/\lambda \) if (1) holds and condition I is satisfied. The case \(\mu_i = 1, \ i = 0, \ldots, s \), gives Jarník's result.

4. Proof of Theorem I. Let \(b_i > 0, \ i = 1, \ldots, s \). By symmetry, it is enough to prove the theorem when \(W \) is defined by
\[W = \{(x_1, \ldots, x_s) | 0 \leq x_i \leq b_i, \ i = 1, \ldots, s\}. \]

We shall prove that, for every \(\sigma > 0 \), if \(\rho = (\sigma + \delta)\lambda^{-1} \) then \(\rho - m^*E = 0 \). We may also assume that \(\delta < 1 - \mu_0 \) if \(\mu_0 < 1 \).

Let \(\epsilon > 0 \). The set of all cubes whose center is \((p_1/p_0, \ldots, p_s/p_0) \in W \) with \((p_0, \ldots, p_s) \in S, \ p_0 > q_0, \) and length of edge \(2Dp_0^\lambda \), is obviously a covering for \(E \). If \(q_0 \) is large enough, the diameter of each cube is smaller than \(\epsilon \). It remains to prove that the series \(M = \sum (p_i/p_0)^\rho = \sum p_i^{-\sigma - \delta} \) converges, where the summation is over all sets \((p_0, \ldots, p_s) \in S \) such that \((p_1/p_0, \ldots, p_s/p_0) \in W \). Since \(p_i = p_i^* p_i' \) for \(i = 0, \ldots, s \), the summation can be broken up into a summation over \(p_1^*, \ldots, p_s^* \), and over \(p_1', \ldots, p_s' \).

Therefore,
\[M = \sum_{p_0} M_1, \quad M_1 \leq \sum_{p_0} \{2\} p_0^{-\sigma - \delta} \sum_{1} 1, \]
where \(\{1\} \) and \(\{2\} \) indicate summations over \(p_1^*, \ldots, p_s^* \) and \(p_1', \ldots, p_s' \), respectively. Positive constants depending only on \(c, \delta, \mu_i, b_i, \Pi_i \) \((0 \leq i \leq s) \) are denoted by \(A \) below. Since \(p_i^* < c p_i^\mu_i < c b_i^\mu_i p_0^\mu_i \) \((1 \leq i \leq s) \), we have \(\Sigma \Pi_1 < A p_0^{-\sigma - \mu_0} \). Putting \(\eta = \delta/2 \), we thus obtain
\[M_1 \leq A p_0^{-\mu_0 - \eta} \sum_{p_0} \{2\} p_0^{-\eta} = A p_0^{-\mu_0 - \eta} \prod_{i=1}^s \sum_{3} p_i^{-\eta/s}, \]
where \(\{3\} \) denotes summation over \(p_i' \in C_i \). Since \(p_i' \leq p_i \leq b_i p_0 \) \((1 \leq i \leq s) \), we obtain
\[\sum_{3} p_i^{-\eta/s} \leq A \sum_{3} p_i'^{-\eta/s} \leq A \prod_{i=1}^s (1 - p_i^{-\eta/s})^{-1} \leq A. \]

Therefore
\[M_1 \leq A p_0^{-\mu_0 - \eta} \quad \text{and} \quad M \leq A \sum_3 p_i'^{-\mu_0 - \eta} \sum_4 p_0^{-\mu_0 - \eta}. \]
where \(\{4\} \) and \(\{5\} \) denote summations over all \(p^*_0 \leq R = C^{1/(1-\mu_0)} p^*_0 \mu_0/(1-\mu_0) \) \((\mu_0 < 1) \) and \(p^*_0 \in C_0, \) respectively. (If \(\mu = 1, M < A \sum_{i=1}^{\infty} p^*_0 - 1 \leq A.) \)

\[
\sum_{i=1}^{\infty} p^*_0^{-\mu_0-\eta} < 1 + \int_1^R x^{-\mu_0-\eta} dx \leq A p^*_0^{-\mu_0-\eta} \mu_0/(1-\mu_0).
\]

Therefore \(M \leq A \sum_{i=1}^{\infty} p^*_0-\eta A \leq \infty, \) completing the proof.

5. Proof that Theorem II implies Theorem III. We may assume that \(\sigma > 0, \) because otherwise Theorem III is trivially true. Let \(P_i \in \Pi_i, \) \(i = 0, \ldots, s \) and \(P_i \neq P_0, i = 1, \ldots, s. \) If condition I is not satisfied, then

\[
(1 - \mu_0)/\log P_0, \ldots, (1 - \mu_s)/\log P_s
\]

are linearly dependent over the rationals.

Let \(\epsilon > 0. \) There exists \(j \) such that \(0 \leq \mu^*_j < \mu_j. \) Choose \(\mu^*_i \) such that \(\mu^*_j < \mu^*_j < \mu_j, \mu_j - \mu^*_j < \epsilon, \) and such that the nonzero members among

\[
(1 - \mu_0)/\log P_0, \ldots, (1 - \mu_s)/\log P_s
\]

are linearly independent over the rationals. Let \(\mu^*_i = \mu_i \) for \(i \neq j, \) and let \(S^T \) and \(S^m \) be the same as \(S^T \) and \(S^i \) respectively, except that in (ii) \(T \) and (ii)' \(\mu_i \) is replaced by \(\mu^*_i \) \((0 \leq i \leq s). \) Then

\[
S^T \subset S^m \subset S^i < S, \quad E^T \subset E^m \subset E^i < E.
\]

By Theorem II,

\[
\dim E \geq \dim E^i \geq \dim E^m \geq \dim E^T \geq (A - \epsilon)/\lambda.
\]

Since this holds for every \(\epsilon > 0, \) we have \(\dim E \geq \dim E^i \geq \sigma/\lambda, \) which is Theorem III.

Remark. Condition I is, however, essential in proving \(\dim E^T \geq \sigma/\lambda, \) as is shown by the following example. Let \(P_0 \) and \(P_1 \) be two distinct primes, \(C_0 = \{ p_0^m \}, C_1 = \{ p_1^m \}, m_0, m_1 \) nonnegative integers. There exist \(\mu_0 \) and \(\mu_1 \) in \([0,1]\) such that \(P_1^{1/(1-\mu_1)} = P_0^{1/(1-\mu_0)} = A > 1. \) Let \(0 < \epsilon < (A - 1)/(A + 1), \) and

\[
1 < c < \min \{ (1 + \epsilon)^{1-\mu_1}, (1 - \epsilon)^{1-\mu_0} \}.
\]

If \((p_0, p_1) \in S^T(c; \mu_0, \mu_1; C_0, C_1) \) and \(p_0, p_1 > 0, \) then

\[
p_i = p^*_i \mu_i, \quad p_i^* \leq p^*_i < c^{-\mu_i}, \quad p_i^* = p_i^m_i, \quad i = 0, 1.
\]

This gives

\[
p_i^{m_i/(1-\mu_i)} \leq p_i < c^{1/(1-\mu_i)} p_i^{m_i/(1-\mu_i)}, \quad i = 0, 1.
\]
and

\[(1 - \varepsilon)A_k < c \frac{1}{(1 - \varepsilon_0)} A_k < \frac{1}{(1 - \varepsilon_0)} A_k < (1 + \varepsilon)A_k, \]

where \(k = m_1 - m_0. \)

The requirement for \(\varepsilon \) implies that \(A(1 - \varepsilon) > 1 + \varepsilon. \) By (2), the interval
\((1 + \varepsilon, A(1 - \varepsilon))\) does not contain any \(p_1/p_0 \) with \((p_0, p_1) \in S^T\) because, if \(k \leq 0, \) then
\((1 + \varepsilon)A_k \leq 1 + \varepsilon, \) and if \(k > 0, \) then
\(A(1 - \varepsilon) \leq (1 - \varepsilon)A_k. \)

6. Lemmas for Theorem II. It suffices to prove Theorem II for an interval \(W \) of the form

\[W = \{(x_1, \ldots, x_s)|a_i \leq x_i \leq b_i \quad i = 1, \ldots, s\}, \]

where the \(a_i \) are arbitrary positive reals, \(b_i = a_i + L_0, \) and \(L_0 \) is any sufficiently small real number, to be chosen later in the proof (Lemma 4).

Lemma 1. It is enough to prove Theorem II for the case \(\mu_i \geq \mu_0, \ i = 1, \ldots, s. \)

Proof. If \(\mu_i < \mu_0 \) for some \(i > 0, \) we may assume that \(\mu_s = \min(\mu_0, \ldots, \mu_s). \)

Let \(\nu_i = \mu_i \) if \(i \neq 0, s, \nu_0 = \mu_s \) and \(\nu_s = \mu_0. \) Let \(\psi: W \rightarrow \mathbb{R}^s \) be defined by

\[\psi(x_1, \ldots, x_{s-1}, x_s) = (x_1/x_s, \ldots, x_{s-1}/x_s, 1/x_s), \]

and let \(\psi(W_1) \subseteq W. \) It is easily seen that \(\psi \) has Jacobian \(a^{-s-1}_s, \) which is bounded away from 0 and \(\infty \) on \(W; \) and therefore preserves Hausdorff dimension.

Let \(S^T, E^T \) be as defined in \(\S 2, \)

\[S^T = S^T(c; \nu_0, \ldots, \nu_s; C_s, C_1, \ldots, C_{s-1}, C_0), \quad E^T = E^T(\lambda, W_1, S^T, D_1), \]

where \(D_1 > 0 \) is sufficiently small. The conditions of Theorem II hold for \(E^T, \) and we have, moreover, \(\nu_i \geq \nu_0 (1 \leq i \leq s). \) Therefore, assuming the validity of the theorem for this case, \(\dim E^T \geq s/\lambda. \) We now prove that for a suitable choice of \(D_1 \) we have \(\psi(E^T_1) \subseteq E^T. \) Let \((\beta_1, \ldots, \beta_s) \in \psi(E^T_1). \) There exists \((a_1, \ldots, a_s) \in E^T_1 \) such that \((a_i/a_s, \ldots, a_{s-1}/a_s, 1/a_s) = (\beta_2, \ldots, \beta_{s-1}, \beta_s), \) and an infinity of \((p_s, \ldots, p_{s-1}, p_0) \in S^T_1 \) \((p_0 \in C_i, \ i = 0, \ldots, s), \) satisfying \(|a_i - p_i/p_s| < D_1p_s^{-\lambda}, \ i \leq s - 1, \)

\[|a_s - p_0/p_s| < D_1p_s^{-\lambda}. \]

Let \(a_i = p_i/p_s + \eta_i, \ i \leq s - 1, \) \(a_s = p_0/p_s + \eta_s, \)

\[|\eta_i| < D_1p_s^{-\lambda} (0 \leq i \leq s). \]

For \(1 \leq i \leq s - 1 \) we then have

\[\frac{a_i}{a_s} = \frac{p_i}{p_0} \cdot \frac{1 + \eta_i p_s/p_i}{1 + \eta_s p_s/p_0}, \]
\[\left| \frac{\alpha_i}{\alpha_s} - \frac{p_i}{p_0} \right| < \frac{p_i}{p_0} (1 - D_1 p_s^{-\lambda} / p_0)^{-1} \left(|\eta_1| \frac{p_s}{p_i} + |\eta_s| \frac{p_s}{p_0} \right) \]

\[\leq 2 \left(\frac{b_i}{a_i} \right) (1 - D_1 p_s^{-\lambda} / p_0)^{-1} D_1 p_s^{-\lambda} < D p_0^{-\lambda}, \]

if \(D_1 \) is sufficiently small. A similar computation shows that \(|\alpha_{s-1} p_s p_0^{-1}| < D p_0^{-\lambda}\) for \(D \) small enough. Thus

\[|\beta_i - p_i/p_0| < D p_0^{-\lambda}, \quad i = 1, \ldots, s, \]

which shows that \(\psi(E^T_1) \subset E^T \). Therefore,

\[\dim E^T \geq \dim \psi(E^T_1) = \dim E^T_1 \geq \sigma/\lambda. \]

From now on we shall assume \(\mu \geq \mu_0 (1 \leq i \leq s) \). We may also assume that every \(\Pi_i \) contains only one prime \(P_i \) such that condition I is satisfied, that not all \(\mu_i \) are 1 because this is Jarník's theorem, and that not all \(\mu_i \) are zero because then Theorem II is trivial. These assumptions are not essential but permit a simpler exposition.

Let \(\delta > 0, \rho = (\sigma - \delta)/\lambda \). In order to prove that \(\rho - m^*(E^T) > 0 \), we use the following special case of a theorem due to P. A. P. Moran [5].

Lemma 2. Let \(s \) be a positive integer, \(E \) a bounded set in \(\mathbb{R}^s \) and \(0 \leq \rho \leq s \). A sufficient condition for \(\rho - m^*(E) \) to be positive is the existence of a closed subset \(F \) of \(E \) and an additive function \(\phi \) defined on the ring \(\mathcal{R} \) generated by the semiopen cubes of \(\mathbb{R}^s \), satisfying the following properties:

(a) \(\phi \) is nonnegative.

(b) For every \(R \in \mathcal{R} \) and \(R \supset F \) we have \(\phi(R) > b > 0 \) for some fixed \(b \).

(c) There exists a positive constant \(k \) such that for every semiopen cube \(R \) we have \(\phi(R) < k d(R)^{\rho} \).

Lemma 3. Let \(\theta_1, \ldots, \theta_s \) be reals such that \(1, \theta_1, \ldots, \theta_s \) are linearly independent over the rationals, \(\delta, \eta, n_0 > 0 \). There exist real numbers \(b, B \) such that for every set of real numbers \(\alpha_1, \ldots, \alpha_s \) there is an \((s + 1) \)-tuple of integers \((m_0, \ldots, m_s) \) satisfying \(|m_0 \theta_i - m_i - \alpha_i| < \delta, 1 \leq i \leq s, n_0 < b < m_0 < B < (1 + \eta)b \).

Except for the explicit bound on \(m_0 \), this is Kronecker's theorem. The bound can be obtained by introducing a slight change in one of the proofs of Kronecker's theorem, for example, Lettenmeyer's proof [4].
Let \(t' \) be the number of nonzero \(\mu_i \) \((1 \leq i \leq s)\), \(0 < \mu < \min \mu_i \neq 0 \mu_i \). We shall now formulate the main lemma.

Lemma 4. Let \(L < L_0, \theta, \eta \) be positive real, \(q_0 = q_0(a, b, \pi, \mu, L, \eta) \) a sufficiently large real number. There exist reals \(A, a \) such that for every cube \(I \subset W \) with edge \(L \), there is a subset \(S_i \subset S^T \) with the following properties:

(i) If \((p_{01}, \ldots, p_{0s}) \in S_i\), then \((p_{1}/p_{01}, \ldots, p_{s}/p_{0s}) \in I\), \(q_0 < a < p_i < A < a^{1+\eta}, (p_i, p_0) = 1, \) all the \((p_0, \ldots, p_s) \in S_i \) share the same fixed \((s + 1)\)-tuple \((p_{01}, \ldots, p_{0s})\).

(ii) If \(p_{0i}^{(1)} < p_{0j}^{(2)} \) and \((p_{0i}^{(1)}, \ldots, p_{0s}^{(1)}) \in S_i \) \((i = 1, 2)\), then there exists at least one \(j \) such that

\[
|p_{0j}^{(1)} / p_0^{(1)} - p_{0j}^{(2)} / p_0^{(2)}| \geq (p_0^{(1)}) - (\sigma/s) - \theta.
\]

(iii) Let \(a^{-\mu} < l \leq L, I, \) any cube with edge length \(l \) contained in \(I \), \(V_l \) the number of elements \((p_{01}, \ldots, p_{0s})\) of \(S_i \) such that \((p_{1}/p_{01}, \ldots, p_{s}/p_{0s}) \in I_l\). Then

\[
V_l < K l^{t'} p_0^{\sigma/(1-\mu)} / Y,
\]

where

\[
Y = \begin{cases}
\log p_0' & \text{if } \mu_0 > 0, \\
1 & \text{if } \mu_0 = 0,
\end{cases}
\]

\(K \) a suitable positive constant depending on \(S^T, W, \lambda, D, \eta, \theta. \)

(iv) The total number \(V_L \) of elements of \(S_i \) satisfies

\[
V_L > KL^{t'} p_0^{\sigma/(1-\mu)} / Y \geq KL^{t'} a^{\sigma / X},
\]

where

\[
X = \begin{cases}
\log a & \text{if } \mu_0 > 0, \\
1 & \text{if } \mu_0 = 0.
\end{cases}
\]

Remark. The convention on \(K \) will be used for the rest of the paper, for the sake of simplicity of notation.

Proof. Let \(\epsilon > 0 \) be sufficiently small,

\[
I = \{(x_1, \ldots, x_s) \mid a_i + \epsilon < y_i \leq x_i \leq y_i + L < b_p, 1 \leq i \leq s\},
\]

\[
1 < c_0 < c_1 < c, \quad c_1 < 1 + \min_i (\epsilon/a_i), \quad c_1/c_0 < 2, \quad c_0 < 2.
\]
Since $\mu_i \geq \mu_0$ and not all μ_i are 1, we have $\mu_0 < 1$. Suppose that μ_0, \ldots, μ_h ($h \leq s$) are all the μ_i which are not 1. We assume first $b > 0$. Let

$$
\delta = \min_{1 \leq i \leq h} \frac{1 - \mu_i}{2 \log P_i} \log \left(1 + \frac{L}{b_i}\right),
$$

$$
\theta_i = \frac{(1 - \mu_i)}{(1 - \mu_0)} \log P_0, \quad \xi_i = -\frac{1 - \mu_i}{2 \log P_i} \log \left(\frac{\gamma_i (\gamma_i + L)}{c_i^2}\right), \quad 1 \leq i \leq h.
$$

Condition I implies that $\theta_1, \ldots, \theta_h$ are linearly independent over the rationals. By Lemma 3, there exist numbers b, B and an $(h + 1)$-tuple of integers (m_0, \ldots, m_h) satisfying

$$
(1 - \mu_0) \log P_0 (q_0 / c_0) < b < m_0 < B < (1 + \eta) b,
$$

(6)

$$
|m_0 \theta_i - m_i - \xi_i| < \delta, \quad 1 \leq i \leq h.
$$

This with the definition of δ implies

$$
\gamma_i < c_1^{m_i/(1-\mu_i)} P_0^{\mu_0/(1-\mu_0)} < \gamma_i + L, \quad 1 \leq i \leq h.
$$

(7)

Define a set T_i of $(s + 1)$-tuples (p_0^*, \ldots, p_s^*) of integers with $p_i = p_i^* p_i^\prime$ ($0 \leq i \leq s$) satisfying:

1. $p_i^\prime = p_i^{m_i}$ ($0 \leq i \leq h$), where (m_0, \ldots, m_h) is a fixed $(h + 1)$-tuple of integers satisfying (7), and $p_i^\prime = 1$ for $i > h$.
2. If $\mu_0 > 0$, p_0^* ranges over all primes $> \max_i P_i$ satisfying

$$
c_0^{\mu_0/(1-\mu_0)} \leq p_i^* \leq c_1^{\mu_0/(1-\mu_0)}.
$$

The existence of such p_0^* is guaranteed if q_0 is sufficiently large. If $\mu_0 = 0$, put $p_0^* = 1$.
3. If $\mu_i > 0$, p_i^* ranges over all integers satisfying

$$
\gamma_i \frac{P_0}{p^\prime} < p_i^* < (\gamma_i + L) \frac{P_0}{p}, \quad (p_i^*, p_0^* p_i^\prime) = 1, \quad 1 \leq i \leq s.
$$

(9)

Since every interval of length > 5 contains an integer relatively prime to the product of three given primes, integers p_i^* satisfying (9) will exist if $L P_0 / p_i^\prime > 6$. By (7) this condition is easily seen to hold if q_0 is sufficiently large. If $\mu_i = 0$, put $p_i^* = 1$.

Now assume $b = 0$. Choose $b = m_0 - 1 > (1 - \mu_0) \log P_0 (q_0 / c_0)$, $B = m_0 + 1$, $p_i^\prime = P_0^{m_0}$, $p_i^\prime = 1$ ($1 \leq i \leq s$), and p_0^*, p_i^* as above. It is clear

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
that such $p_i^* = p_i$ satisfying (9) do in fact exist. Moreover, for q_0 sufficiently
large, (6) holds.

The definition of T_i implies that if $(p_0, \ldots, p_s) \in T_i$, then $a_i < p_i/p_0 < b_i$, and $(p_i, p_0) = 1$ ($1 \leq i \leq s$). This follows from (9) if $h \mu_i > 0$ or $h = 0$. If $b > 0$, $\mu_i = 0$, it follows from (7) and (5). For $h > 0$, $\mu_i = 0$, $\mu_0 > 0$, we have by (4), (5), (7) and (8),

$$a_i < \frac{a_i + \epsilon}{c_1} < \frac{\gamma_i}{c_1} < \frac{p_i + \gamma_i}{p_0} < \frac{\gamma_i + L}{c_0} < \gamma_i + L.$$

Let $a = c_0 p_0^{1-\mu_0}$, $A = c_0 p_0^{1-\mu_0}$. If q_0 is sufficiently large, we obtain, by (6), (8) and (5) ($\mu_0 \geq 0$, $h \geq 0$),

$$q_0 < a < p_0 < A < a^{1+\eta}, \quad a^{-\mu} < L.$$

For $\mu_0 > 0$, (8) implies $p_i > c_0^{1-\mu_0} p_0^{\mu_0} < p_i^* < c_1 p_0^{\mu_0} < c_0 p_0^{\mu_0}$, and for $\mu_0 = 0$, $p_i^* = p_0^{\mu_0}$. To prove that $T_i \subseteq S_T$, it remains to show that

$$p_i^* < p_i < c p_i^*, \quad 1 \leq i \leq s.$$

We may assume $0 < \mu_i < 1$ ($1 \leq i \leq s$), because otherwise (10) is trivial. If $\mu_0 > 0$, we obtain, from (7), (8), (9),

$$(c_0 c_1)^{1-\mu_i} \frac{\gamma_i}{\gamma_i + L} p_i^{\mu_i} < p_i^* < c_1 \frac{(1-\mu_i)^2 \gamma_i + L}{\gamma_i} p_i^{\mu_i},$$

and for $\mu_0 = 0$, we obtain, from (7) and (9),

$$\frac{\gamma_i}{\gamma_i + L} c^{1-\mu_i} p_i^{\mu_i} < p_i^* < \frac{\gamma_i + L}{c_1} p_i^{\mu_i}.$$

Therefore (10) will hold by choosing L to satisfy

$$0 < L < L_0 < \min_{1 \leq i \leq s} (a_i (c/c_1 - 1), a_i (c_1 - 1)).$$

We thus proved that $T_i \subseteq S_T$. Let

$$I_i = \{ (x_1, \ldots, x_s) | \gamma_i \beta_i \leq x_i \leq \beta_i + l \leq \gamma_i + L, 1 \leq i \leq s \}, \quad a^{-\mu} < l \leq L.$$

Let p_0 be fixed. For $\mu_i > 0$ ($i > 0$), denote by $W^*_i(p_0)$ the number of integers p_i^* relatively prime to $p_0^* P_0 P_i$, which satisfy $\beta_i p_0 / p_i^* < (\beta_i + h) p_0^* / p_i^*$. Lemma 4 of [2] implies
\[\left(\frac{lp_0}{p_i^*} - 1 \right) \left(1 - \frac{1}{p_i^*} \right) \left(1 - \frac{1}{p_0^*} \right) - 2^3 < w_i(p_0^*) \]
\[< \left(\frac{lp_0}{p_i^*} + 1 \right) \left(1 - \frac{1}{p_i^*} \right) \left(1 - \frac{1}{p_0^*} \right) \left(1 - \frac{1}{p_0^*} \right) + 2^3, \]

except that the factor \(1 - \frac{1}{p_0^*} \) is dropped if \(p_0^* = 0 \). Since \(l > a^{-\mu} > p_0^{-\mu} \), (9) and (10) imply \(lp_0/p_i^* > Kp_0^{-\mu_i} \). Since \(\mu_i - \mu > 0 \), 1 is absorbed by \(lp_0/p_i^* \). Thus

\[(11) \quad Kl^i < w_i(p_0) < Kl^i. \]

For fixed \(p_0 \), denote by \(W_i(p_0) \) the number of elements \((p_0, \ldots, p_s) \in T_I \) such that \((p_1/p_0, \ldots, p_s/p_0) \in I_I \). Multiplying together the \(t \) inequalities (11) and defining \(w_i(0) = 1 \) for \(\mu_i = 0 \), we obtain

\[(12) \quad Kl^{i\sigma - \mu_0} < W_i(p_0) < Kl^{i\sigma - \mu_0}. \]

It is easily seen that if \(s = 1 \), the set \(T_I \) satisfies all the conditions of the lemma for \(S_I \). For \(s > 1 \), however, condition (ii) is not necessarily satisfied. Let \((p_0, p_1^{(1)}, \ldots, p_s^{(1)}) \) and \((p_0, p_1^{(2)}, \ldots, p_s^{(2)}) \) be two distinct elements of \(T_I \) with the same \(p_0 \). By (9) and (10),

\[\left| \frac{p_i^{(1)}}{p_0} - \frac{p_i^{(2)}}{p_0} \right| = \frac{p_i^*}{p_0} \left| p_i^{(1)} - p_i^{(2)} \right| \geq \frac{p_i^*}{p_0} > Kp_0^{-\mu_i}. \]

There exists \(j \) such that

\[\mu_j \leq \frac{1}{s} \sum_{i=1}^{s} \mu_i < \frac{\sigma}{s} + \theta; \]

hence

\[\left| \frac{p_j^{(1)}}{p_0} - \frac{p_j^{(2)}}{p_0} \right| \geq Kp_0^{-\mu_j} > Kp_0^{-\sigma/s - \theta}. \]

Condition (ii) of the lemma is therefore satisfied for two elements of \(T_I \) with the same \(p_0 \). If \(\mu_0 = 0 \), then all the elements of \(T_I \) have the same \(p_0 \) and we define \(S_I = T_I \) in this case. If \(\mu_0 > 0 \), we define \(S_I \subset T_I \) by excluding all those elements \((p_0, \ldots, p_s) \) of \(T_I \) for which there exists \(p_0^{(1)} < p_0 \) and \((p_0^{(1)}, \ldots, p_s^{(1)}) \in T_I \) such that for \(i = 1, \ldots, s \) we have
Clearly, S_i satisfies condition (ii) of the lemma. We shall now count the number of elements of T_i which are not in S_i. Let $N(p_0, p_0^{(1)})$ be the number of elements of T_i for a fixed p_0 and fixed $p_0^{(1)} < p_0$, for which (13) holds for some i. For fixed p_0, let $N(p_0)$ denote the number of those elements (p_0, \ldots, p_s) of T_i for which there exists an element $(p_0^{(1)}, \ldots, p_s^{(1)})$ of T_i such that (13) holds for every i. Clearly,

$$N(p_0) \leq \sum_{p_0^{(1)} \leq p_0} \prod_{i=1}^s N_i(p_0, p_0^{(1)}).$$

From (13),

$$|p_i^{*} - p_0^{*}| < \frac{1}{p_0^{(1)}}/p_i^{(1)}(\sigma/s) + \theta.$$

The expression $p_i^{*} - p_0^{*}$ can therefore assume at most

$$2p_0^{(1)}/p_i^{(1)}(\sigma/s) + \theta$$

different values. Let u be a fixed integer. The equation $p_i^{*} - p_0^{*} = u$ implies

$$(14)\quad p_i^{*} = u \pmod{p_0^{*}}.$$

Since p_0^{*} is a prime, this congruence has exactly one solution p_i^{*} in each interval of length p_0^{*}. The integer p_i^{*} is to be chosen in the interval $[\gamma_i p_0/p_i^{(1)}(\gamma_i + L)/p_0^{(1)}]$ of length $Lp_0^{(1)}p_i^{(1)} = KLp_0^{\mu_i}$. Since $p_0^{*} > c_0^{1-\mu_0}p_0^{\mu_0}$ and $\mu_i \geq \mu_0$, the number of solutions of (14) is $Lp_0^{(1)}p_i^{(1)} < KLp_0^{\mu_i-\mu_0}$. Therefore

$$N_i(p_0, p_0^{(1)}) \leq KL \frac{p_0^{(1)}p_0^{(1)}(\sigma/s) + \theta}{\mu_i(p_0^{(1)}(\sigma/s) + \theta)},$$

and hence

$$N(p_0) \leq KL \sum_{p_0^{(1)} < p_0} \frac{p_0^{(1)}p_0^{(1)}(\sigma/s) + \theta}{\mu_i(p_0^{(1)}(\sigma/s) + \theta)}.$$
I. BOROSII AND A. S. FRAENKEL

The last sum converges as was shown in the proof of Theorem I. Therefore,

\[N(p_0) \leq KL^s p_0^{\sigma - \mu_0 - \theta s/2}. \]

Let \(V_I(p_0) \) denote the number of elements \((p_0, \ldots, p_s)\) of \(S_I \) such that
\((p_1/p_0^\gamma, \ldots, p_s/p_0^\gamma) \in I_I \) for fixed \(p_0 \), and let \(V_I \) be the total number of
those elements in \(S_I \). By (12),

\[V_I(p_0) \leq W_I(p_0) \leq KL^t p_0^{\sigma - \mu_0}, \]

\[V_L(p_0) = W_L(p_0) - N(p_0) \geq KL^t p_0^{\sigma - \mu_0}. \]

Therefore,

\[V_I < KL^t \sum p_0^{\sigma - \mu_0}, \quad V_L > KL^t \sum p_0^{\sigma - \mu_0}, \]

where \(\sum \) denotes summation over all \(p_0 \) so that \((p_0, \ldots, p_s) \in S_I \). By (8),

\[K p_0^{(\sigma - \mu_0)/(1 - \mu_0)} \sum 1 < \sum p_0^{\sigma - \mu_0} < K p_0^{(\sigma - \mu_0)/(1 - \mu_0)} \sum 1, \]

where \(\sum 1 = 1 \) if \(\mu_0 = 0 \). If \(\mu_0 > 0 \), we obtain from (8) and the Prime Number Theorem,

\[K p_0^{(\sigma - \mu_0)/(1 - \mu_0)/\log p_0} < \sum p_0^{\sigma - \mu_0} < K p_0^{(\sigma - \mu_0)/(1 - \mu_0)/\log p_0}. \]

Therefore we obtain \((\mu_0 \geq 0) \)

\[V_I < KL^t p_0^{\sigma/(1 - \mu_0)/Y}, \]

\[V_L > KL^t p_0^{\sigma/(1 - \mu_0)/Y} > KL^t a^{\sigma/X}, \]

completing the proof of Lemma 4.

7. Proof of Theorem II. By (1), \(\lambda = \sigma/\min(s, t) + r \), for some \(r > 0 \). We
shall construct by induction a sequence of closed sets \(F_0 \supset F_1 \supset \cdots \) and
a sequence of additive functions \(\phi_n \) on \(\mathbb{R} \) such that the set
\(F = \bigcap_{n=1}^{\infty} F_n \subset E \),
and the function \(\phi = \lim_{n \to \infty} \phi_n \) satisfy the hypothesis of Lemma 2 with \(\rho = (\sigma - \delta)/\lambda \). Let \(F_0 = \emptyset, \) the set whose unique element is \(F_0 \). Let \(A_0 > \)
\((L_0/D)^{-1/\lambda} \) be sufficiently large. For every \(l \in \mathbb{R} \) and \(I \subset W \) we define \(\phi_0(l) = V(l)/L_0^s \), where \(V(l) \) denotes the \(s \)-dimensional volume of \(l \).

Suppose that for \(k = 0, \ldots, n - 1 \), a suitable increasing sequence of
positive numbers \(A_k \) and sets \(G_k \) of disjoint closed cubes all with edge \(L_k = 2D(2A_k)^{-\lambda} \) have already been defined such that every element of \(G_k \) is con-
tained in some element of \(G_{k-1} \). Let \(F_k \) be the union of all elements of \(G_k \).
Suppose also that a sequence ϕ_k of additive functions on \mathbb{R} has already been defined for all $k < n$.

Let $I \in G_{n-1}$, I' the cube concentric with I with edge $L_{n-1}/2$. We apply Lemma 4 with δ, η satisfying $0 < \theta < \min(\delta, \beta)$, $0 < \eta < \delta/(\sigma - \delta)$, where $0 < \delta < \sigma$; $L = L_{n-1}/2$, A_{n-1} as q_0 and I' as I. There exist reals a_n, A_n and a subset $S_{I'} \subset S^T$ of $(s + 1)$-tuples of integers (p_0, \ldots, p_s) satisfying
\[
(p_1/p_0, \ldots, p_s/p_0) \in I', \quad A_n - 1 < a_n < A_n < a_n^{1+\eta},
\]
and (3). Let G_n be the set of all closed cubes with centers $(p_1/p_0, \ldots, p_s/p_0) \in I'$ and length of edge $2D(2A_n)^{-\lambda}$ where I ranges over all cubes of G_{n-1}.

Note that each I' has its own unique p_0, which induces a number of p_0 as specified by (8) (if $\mu_0 > 0$), but by Lemma 3 all of these p_0 satisfy the inequalities of (i) of Lemma 4 for the same $a = a, A = A$.

By (3), all cubes in G_n are disjoint if A_n is sufficiently large, as we shall assume. Let F_n be the union of all cubes in G_n. Then F_n is closed and $F_n \subset F_{n-1}$. If $I \in G_n$, then $I \subset J \in G_{n-1}$. Letting N_J be the number of elements of G_n contained in J, we define $\phi_n(I) = \phi_{n-1}(J)/N_J$. If $I \in \mathbb{R}$ and $I \subset J \in G_n$, let $\phi_n(I) = \phi_n(J) - V(J)/V(J)$. If $I \subset W$ is an arbitrary element of \mathcal{R}, then $I = \bigcup_{i \in H} I \cup Q$, where $I_i = I \cap J_i, J_i \in G_n, Q \cap F_n = \emptyset$. In this case we define $\phi_n(I) = \sum_i \phi_n(I_i)$. The following properties of the functions ϕ_n are obvious: They are nonnegative finite additive functions on \mathbb{R}, and for $I \in G_{n-1}$, $\phi_n(I) = \phi_{n-1}(I)$. If $I \in \mathbb{R}$, $I \subset F_n$, then $\phi_n(I) = 1$. Let $\delta_i, i = 0, 1, 2, \ldots, \beta_i$ be positive reals such that the product $\Pi_{i=0}^\infty (1 + \delta_i)$ converges and δ_0, δ_1 sufficiently large. Let $k_n = \Pi_{i=0}^\infty (1 + \delta_i)$. We shall prove by induction on n that the sequence A_i can be chosen such that for every cube $I \subset W$,
\[
(15) \quad \phi_n(I)/\delta(I) < k_n.
\]

For $n = 0$,
\[
\frac{\phi_0(\delta)^n}{\delta(I)^n} = \frac{V(l)}{L_0^s \delta(I)^n} = s^{-s/2}L_0^{-s}a^{-\sigma} \leq KL_0^{-\rho} < 1 + \delta_0.
\]

Let $\Delta_n = \max_{I \in G_n} \phi_n(I)$. By (iv) of Lemma 4,
\[
\Delta_n < KL_{n-1}^{-L_{n-1}} \Delta_{n-1} X_n a^{-\sigma}, \quad X_n = \begin{cases}
\log a_n & \text{if } \mu_0 > 0, \\
1 & \text{if } \mu_0 = 0.
\end{cases}
\]

For proving (15) we distinguish several cases.

(a) $I \in G_n$. Then
\[
\frac{\phi_n(l)}{\delta(l)^\rho} < \frac{\Delta_n}{L_n^\rho} < KL_{n-1}^{-\alpha} \Delta_{n-1}^{-1} X_n^{-\sigma} A_n^{\lambda \rho} < KL_{n-1}^{-\alpha} \Delta_{n-1}^{-1} X_n^{-\sigma(1+\eta)(\sigma-\delta)},
\]

The exponent of \(a_n \) is negative. For \(a_n \) large enough, \(\phi_n(l)/\delta(l)^\rho \) can thus be made as small as desired.

(b) \(I \subseteq J \subseteq G_n \). Then

\[
\frac{\phi_n(l)}{\delta(l)^\rho} = \frac{\phi_n(j)}{\delta(i)^\rho} \frac{V(l)}{V(j)} = \frac{\phi_n(j)}{\delta(j)^\rho} \left(\frac{\delta(i)}{\delta(j)} \right)^{s-\rho} \leq \frac{\phi_n(j)}{\delta(j)^\rho},
\]

which is reduced to the previous case.

(c) \(I \subseteq J \subseteq G_{n-1} \) and the length \(l \) of the edge of \(I \) is greater than \(a_n^{-\mu} \). Let \(N_I \) and \(N_J \) denote the number of elements of \(G_n \) with nonempty intersection with \(I \) and \(J \) respectively. By (iii) and (iv) of Lemma 4,

\[
\frac{\phi_n(l)}{\delta(l)^\rho} \leq \frac{\phi_n(I)}{N_J} \cdot \frac{V(I)}{V(J)} \leq K \frac{\phi_n(I)}{\delta(I)^\rho} \frac{L_I^\rho}{L_J^\rho} \leq K \frac{\phi_n(I)}{\delta(I)^\rho},
\]

since inequality (1) on \(\lambda \) implies \(t'-\rho > 0 \). For \(n > 1 \), the last expression can be made as small as desired if \(a_{n-1}^{-\mu} \) is large enough, as was shown in case (a). For \(n = 1 \),

\[
\frac{\phi_1(l)}{\delta(l)^\rho} < K \frac{\phi_0(I)}{\delta(I)^\rho} < K \frac{1}{L_0^\rho} \leq 1 + \delta_1,
\]

if \(\delta_1 \) is sufficiently large.

(d) \(I \subseteq J \subseteq G_{n-1} \) but the edge \(l \) of \(I \) is not greater than \(a_n^{-\mu} \). The cubes concentric to the cubes of \(G_n \) and with edge of length \(A_n^{-\sigma/s-\theta} \) are disjoint by (3), so the number \(N_I \) of cubes of \(G_n \) with nonempty intersection with \(I \) is at most \(N_I \leq K \delta(I)^s A_n^{\sigma-\theta}s \). Therefore,

\[
\frac{\phi_n(l)}{\delta(l)^\rho} \leq \frac{N_I \Delta_n}{\delta(l)^\rho} \leq K \Delta_{n-1}^{-\alpha} L_{n-1}^{-\alpha} a_n^{-\mu(s-\rho)+(1+\eta)(\sigma+\theta)s} A_n^{\sigma(1+\eta)(\sigma-\delta)}.
\]

For \(\theta, \eta \) small enough and \(a_n \) large enough, this can be made as small as desired.
(e) \(I \) is an arbitrary cube of edge length \(l \). We may assume \(n > 1 \), as the case \(n = 1 \) is settled by the previous cases. We may also assume \(l > \frac{1}{2} A_{n-1}^{-\left(\frac{\sigma}{s}\right)-\theta} \), since otherwise, for \(A_{n-1} \) large enough, \(I \) intersects at most one element of \(G_{n-1} \), which is also subsumed by the previous cases. Let \(J \) be a cube with the same center as \(I \) and edge length \(l + 4A_{n-1}^- \). For \(A_{n-1} \) large enough we have

\[
(\delta(J)/\delta(I))^{\rho} < 1 + \delta_n,
\]

\[
\frac{\phi_n(I)}{\delta(I)^{\rho}} \leq \frac{\phi_{n-1}(I)}{\delta(I)^{\rho}} = \frac{\phi_{n-1}(J)}{(\delta(J)/\delta(I))^{\rho}} < (1 + \delta_n)k_{n-1} = k_n,
\]

which proves (15).

Now let \(\epsilon_i, i \geq 2 \), be any sequence of positive integers such that \(\sum_{i=2}^{\infty} \epsilon_i \) converges. For every cube \(I \in \mathbb{R} \), we have

\[
\phi_n(I) = \phi_0(I) + (\phi_1(I) - \phi_0(I)) + \cdots + (\phi_n(I) - \phi_{n-1}(I)).
\]

The difference \(\phi_k(I) - \phi_{k-1}(I) \) is contributed by those elements of \(G_{k-1} \) which intersect the boundary of \(I \). Let \(N_k \) be the number of those elements of \(G_{k-1} \). The cubes concentric to the elements of \(G_{k-1} \) and whose length of edge is \(\frac{1}{2} A_{k-1}^{-\left(\frac{\sigma}{s}\right)-\theta} \) are disjoint. Therefore,

\[
|\phi_k(I) - \phi_{k-1}(I)| \leq N_k^{\frac{1}{2}} A_{k-1}^{-\left(\frac{\sigma}{s}\right)-\theta}.
\]

If the max in (16) is 1, then for \(a_{k-1} \) large enough \(|\phi_k(I) - \phi_{k-1}(I)| < \epsilon_k \).

Otherwise,

\[
|\phi_k(I) - \phi_{k-1}(I)| \leq K\delta(I)^{s-1}L_{k-2}^{-\left(\frac{\sigma}{s}\right)-\theta}(s-1)^{-\sigma(1+\eta)}.
\]

For \(\theta \) small and \(A_{k-1} \) large enough, this is smaller than \(\epsilon_k \). This proves that the functions \(\phi_n \) converge on each cube \(I \in \mathbb{R} \). Since the functions \(\phi_n \) are additive, they converge also for every \(I \in \mathbb{R} \). The limit function \(\phi \) is non-negative, finite and additive. If \(I \in \mathbb{R}, I \supset F \), there exists \(n \) such that \(I \supset F \) and so \(\phi(I) = \phi_n(I) = 1 \). For every cube \(I \subset W \) there exists \(n \) such that

\[
|\phi_n(I) - \phi(I)| < \delta(I)^{\rho}, \quad \frac{\phi(I)}{\delta(I)^{\rho}} < \frac{\phi_n(I) + \delta(I)^{\rho}}{\delta(I)^{\rho}} < k_n + 1 < k.
\]

So \(\phi, F, \rho \) satisfy the conditions of Lemma 2, and we have \(\rho - m^*E_T > 0 \).

Acknowledgement. The authors wish to thank the referee for his useful comments.
REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of I. Borosh)

DEPARTMENT OF APPLIED MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL (Current address of A. S. Fraenkel)