Unions of Hilbert cubes
Authors:
Raymond Y. T. Wong and Nelly Kroonenberg
Journal:
Trans. Amer. Math. Soc. 211 (1975), 289297
MSC:
Primary 57A20; Secondary 54B10, 54F40
MathSciNet review:
0377895
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper gives a partial solution to the problem whether the union of two Hilbert cubes is a Hilbert cube if the intersection is a Hilbert cube and a Zset in one of them. Our results imply West's Intermediate Sum Theorem on Hilbert cube factors. Also a technique is developed to obtain Zsets as limits of Zsets.
 [1]
R.
D. Anderson, On topological infinite deficiency, Michigan
Math. J. 14 (1967), 365–383. MR 0214041
(35 #4893)
 [2]
, On sigmacompact subsets of infinitedimensional spaces, Trans. Amer. Math. Soc. (to appear).
 [3]
W. Barit, Small extensions of small homeomorphisms, Notices Amer. Math. Soc. 16 (1969), 295. Abstract #663715.
 [4]
Morton
Brown, Some applications of an approximation
theorem for inverse limits, Proc. Amer. Math.
Soc. 11 (1960),
478–483. MR 0115157
(22 #5959), http://dx.doi.org/10.1090/S00029939196001151574
 [5]
D.
W. Curtis and R.
M. Schori, 2^{𝑥} and 𝐶(𝑋)
are homeomorphic to the Hilbert cube, Bull.
Amer. Math. Soc. 80
(1974), 927–931. MR 0353235
(50 #5719), http://dx.doi.org/10.1090/S000299041974135792
 [6]
Nelly
Kroonenberg, Characterization of finitedimensional
𝑍sets, Proc. Amer. Math. Soc. 43 (1974), 421–427.
MR
0334221 (48 #12540), http://dx.doi.org/10.1090/S00029939197403342218
 [7]
H.
Toruńczyk, Remarks on Anderson’s paper: “On
topological infinte deficiency”., Fund. Math.
66 (1969/1970), 393–401. (errata insert). MR 0261536
(41 #6149)
 [8]
James
E. West, Infinite products which are Hilbert
cubes, Trans. Amer. Math. Soc. 150 (1970), 1–25. MR 0266147
(42 #1055), http://dx.doi.org/10.1090/S00029947197002661473
 [9]
, Sums of Hilbert cube factors (preprint).
 [1]
 R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365383. MR 35 #4893. MR 0214041 (35:4893)
 [2]
 , On sigmacompact subsets of infinitedimensional spaces, Trans. Amer. Math. Soc. (to appear).
 [3]
 W. Barit, Small extensions of small homeomorphisms, Notices Amer. Math. Soc. 16 (1969), 295. Abstract #663715.
 [4]
 M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478483. MR 22 #5959. MR 0115157 (22:5959)
 [5]
 D. W. Curtis and R. M. Schori, and are homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc. 80 (1974), 927931. MR 0353235 (50:5719)
 [6]
 N. Kroonenberg, Characterization of finitedimensional Zsets, Proc. Amer. Math. Soc. 43 (1974), 421427. MR 0334221 (48:12540)
 [7]
 H. Toruńczyk, Remarks on Anderson's paper: ``On topological infinite deficiency", Fund. Math. 66 (1969/70), 393401. MR 41 #6149. MR 0261536 (41:6149)
 [8]
 J. E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 125. MR 42 #1055. MR 0266147 (42:1055)
 [9]
 , Sums of Hilbert cube factors (preprint).
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
57A20,
54B10,
54F40
Retrieve articles in all journals
with MSC:
57A20,
54B10,
54F40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503778953
PII:
S 00029947(1975)03778953
Keywords:
Union of Hilbert cubes,
union of Hilbert cube factors,
cap set,
fd cap set,
inverse limit,
near homeomorphism,
in hyperspace
Article copyright:
© Copyright 1975
American Mathematical Society
