Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Kōmura's closed-graph theorem


Author: Michael H. Powell
Journal: Trans. Amer. Math. Soc. 211 (1975), 391-426
MSC: Primary 46A30
DOI: https://doi.org/10.1090/S0002-9947-1975-0380339-9
MathSciNet review: 0380339
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (\alpha )$ be a property of separated locally convex spaces. Call a locally convex space $ E[\mathcal{J}]$ an $ (\bar \alpha )$-space if $ \mathcal{J}$ is the final topology defined by $ {\{ {u_i}:{E_i}[{\mathcal{J}_i}] \to E\} _{i \in I}}$, where each $ {E_i}[{\mathcal{J}_i}]$ is an $ (\alpha )$-space. Then, for each locally convex space $ E[\mathcal{J}]$, there is a weakest $ (\bar \alpha )$-topology on E stronger that $ \mathcal{J}$, denoted $ {\mathcal{J}^{\bar \alpha }}$.

Kōmura's closed-graph theorem states that the following statements about a locally convex space $ E[\mathcal{J}]$ are equivalent:

(1) For every $ (\alpha )$-space F and every closed linear map $ u: F \to E[\mathcal{J}]$, u is continuous.

(2) For every separated locally convex topology $ {\mathcal{J}_0}$ on E, weaker than $ \mathcal{J}$, we have $ \mathcal{J} \subset \mathcal{J}_0^{\bar \alpha }$.

Much of this paper is devoted to amplifying Kōmura's theorem in special cases, some well-known, others not.

An entire class of special cases, generalizing Adasch's theory of infra-(s) spaces, is established by considering a certain class of functors, defined on the category of locally convex spaces, each functor yielding various notions of ``completeness'' in the dual space.


References [Enhancements On Off] (What's this?)

  • [1] N. Adasch, Tonnelierte Räume und zwei Sätze von Banach, Math. Ann. 186 (1970), 209-214. MR 0467230 (57:7094)
  • [2] J. Dacord and M. Jourlin, Sur les pré compacts d'un éspace localement convexe, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A463-A466. MR 47 #751.
  • [3] M. De Wilde, Théorème du graphe fermé et éspaces à réseaux absorbants, Bull. Math. Soc. Sci. Math. R. S. Roumanie 11 (59) (1967), 225-238. MR 37 # 5668. MR 0230103 (37:5668)
  • [4] -, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A376-A379. MR 36 #5647. MR 0222597 (36:5647)
  • [5] -, Réseaux dans les éspaces linéaires à semi-normes, Mém. Soc. Roy. Sci. Liège Coll. in 8$ ^{0}$ (5) 18 (1969), no. 2, 144 pp. MR 44 #3102. MR 0285885 (44:3102)
  • [6] V. Eberhardt, Durch Graphensätze definierte lokalkonvexe Räume, Dissertation, Munich, 1972.
  • [7] J. M. Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863. MR 0205028 (34:4863)
  • [8] G. Köthe, Topological vector spaces. I, Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 40 # 1750. MR 0248498 (40:1750)
  • [9] Y. Kōmura, On linear topological spaces, Kumamoto J. Sci. Ser. A 5 (1962), 148-157. MR 27 #1800. MR 0151817 (27:1800)
  • [10] V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. MR 21 # 4345. MR 0105606 (21:4345)
  • [11] M. Valdivia Ureña, The general closed graph theorem in locally convex topological vector spaces, Rev. Acad. Ci. Madrid 62 (1968), 545-551. (Spanish) MR 39 # 1940. MR 0240593 (39:1940)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A30

Retrieve articles in all journals with MSC: 46A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0380339-9
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society